Cargando…
Identification of effective diagnostic biomarker and immune cell infiltration characteristics in acute liver failure by integrating bioinformatics analysis and machine-learning strategies
Background: To determine effective biomarkers for the diagnosis of acute liver failure (ALF) and explore the characteristics of the immune cell infiltration of ALF. Methods: We analyzed the differentially expressed genes (DEGs) between ALF and control samples in GSE38941, GSE62029, GSE96851, GSE1206...
Autores principales: | Yuan, Mengqin, Yao, Lichao, Hu, Xue, Jiang, Yingan, Li, Lanjuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554357/ https://www.ncbi.nlm.nih.gov/pubmed/36246593 http://dx.doi.org/10.3389/fgene.2022.1004912 |
Ejemplares similares
-
Comprehensive bioinformatics and machine learning analysis identify VCAN as a novel biomarker of hepatitis B virus-related liver fibrosis
por: Yuan, Mengqin, et al.
Publicado: (2022) -
Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease
por: Yuan, Mengqin, et al.
Publicado: (2022) -
Bioinformatic analysis and machine learning to identify the diagnostic biomarkers and immune infiltration in adenomyosis
por: Liu, Dan, et al.
Publicado: (2023) -
Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning
por: Xie, Rongjun, et al.
Publicado: (2023) -
Identification and Validation of the Diagnostic Characteristic Genes of Ovarian Cancer by Bioinformatics and Machine Learning
por: Liu, Jinya, et al.
Publicado: (2022)