Cargando…
Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis
Staphylococcus epidermidis is one of the most common bacteria of the human skin microbiota. Despite its role as a commensal, S. epidermidis has emerged as an opportunistic pathogen, associated with 80% of medical devices related infections. Moreover, these bacteria are extremely difficult to treat d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554481/ https://www.ncbi.nlm.nih.gov/pubmed/36246270 http://dx.doi.org/10.3389/fmicb.2022.1000737 |
_version_ | 1784806706655526912 |
---|---|
author | Gonçalves, Luis Gafeira Santos, Susana Gomes, Laidson Paes Armengaud, Jean Miragaia, Maria Coelho, Ana Varela |
author_facet | Gonçalves, Luis Gafeira Santos, Susana Gomes, Laidson Paes Armengaud, Jean Miragaia, Maria Coelho, Ana Varela |
author_sort | Gonçalves, Luis Gafeira |
collection | PubMed |
description | Staphylococcus epidermidis is one of the most common bacteria of the human skin microbiota. Despite its role as a commensal, S. epidermidis has emerged as an opportunistic pathogen, associated with 80% of medical devices related infections. Moreover, these bacteria are extremely difficult to treat due to their ability to form biofilms and accumulate resistance to almost all classes of antimicrobials. Thus new preventive and therapeutic strategies are urgently needed. However, the molecular mechanisms associated with S. epidermidis colonisation and disease are still poorly understood. A deeper understanding of the metabolic and cellular processes associated with response to environmental factors characteristic of SE ecological niches in health and disease might provide new clues on colonisation and disease processes. Here we studied the impact of pH conditions, mimicking the skin pH (5.5) and blood pH (7.4), in a S. epidermidis commensal strain by means of next-generation proteomics and (1)H NMR-based metabolomics. Moreover, we evaluated the metabolic changes occurring during a sudden pH change, simulating the skin barrier break produced by a catheter. We found that exposure of S. epidermidis to skin pH induced oxidative phosphorylation and biosynthesis of peptidoglycan, lipoteichoic acids and betaine. In contrast, at blood pH, the bacterial assimilation of monosaccharides and its oxidation by glycolysis and fermentation was promoted. Additionally, several proteins related to virulence and immune evasion, namely extracellular proteases and membrane iron transporters were more abundant at blood pH. In the situation of an abrupt skin-to-blood pH shift we observed the decrease in the osmolyte betaine and changes in the levels of several metabolites and proteins involved in cellular redoxl homeostasis. Our results suggest that at the skin pH S. epidermidis cells are metabolically more active and adhesion is promoted, while at blood pH, metabolism is tuned down and cells have a more virulent profile. pH increase during commensal-to-pathogen conversion appears to be a critical environmental signal to the remodelling of the S. epidermidis metabolism toward a more pathogenic state. Targeting S. epidermidis proteins induced by pH 7.4 and promoting the acidification of the medical device surface or surrounding environment might be new strategies to treat and prevent S. epidermidis infections. |
format | Online Article Text |
id | pubmed-9554481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95544812022-10-13 Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis Gonçalves, Luis Gafeira Santos, Susana Gomes, Laidson Paes Armengaud, Jean Miragaia, Maria Coelho, Ana Varela Front Microbiol Microbiology Staphylococcus epidermidis is one of the most common bacteria of the human skin microbiota. Despite its role as a commensal, S. epidermidis has emerged as an opportunistic pathogen, associated with 80% of medical devices related infections. Moreover, these bacteria are extremely difficult to treat due to their ability to form biofilms and accumulate resistance to almost all classes of antimicrobials. Thus new preventive and therapeutic strategies are urgently needed. However, the molecular mechanisms associated with S. epidermidis colonisation and disease are still poorly understood. A deeper understanding of the metabolic and cellular processes associated with response to environmental factors characteristic of SE ecological niches in health and disease might provide new clues on colonisation and disease processes. Here we studied the impact of pH conditions, mimicking the skin pH (5.5) and blood pH (7.4), in a S. epidermidis commensal strain by means of next-generation proteomics and (1)H NMR-based metabolomics. Moreover, we evaluated the metabolic changes occurring during a sudden pH change, simulating the skin barrier break produced by a catheter. We found that exposure of S. epidermidis to skin pH induced oxidative phosphorylation and biosynthesis of peptidoglycan, lipoteichoic acids and betaine. In contrast, at blood pH, the bacterial assimilation of monosaccharides and its oxidation by glycolysis and fermentation was promoted. Additionally, several proteins related to virulence and immune evasion, namely extracellular proteases and membrane iron transporters were more abundant at blood pH. In the situation of an abrupt skin-to-blood pH shift we observed the decrease in the osmolyte betaine and changes in the levels of several metabolites and proteins involved in cellular redoxl homeostasis. Our results suggest that at the skin pH S. epidermidis cells are metabolically more active and adhesion is promoted, while at blood pH, metabolism is tuned down and cells have a more virulent profile. pH increase during commensal-to-pathogen conversion appears to be a critical environmental signal to the remodelling of the S. epidermidis metabolism toward a more pathogenic state. Targeting S. epidermidis proteins induced by pH 7.4 and promoting the acidification of the medical device surface or surrounding environment might be new strategies to treat and prevent S. epidermidis infections. Frontiers Media S.A. 2022-09-28 /pmc/articles/PMC9554481/ /pubmed/36246270 http://dx.doi.org/10.3389/fmicb.2022.1000737 Text en Copyright © 2022 Gonçalves, Santos, Gomes, Armengaud, Miragaia and Coelho. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Gonçalves, Luis Gafeira Santos, Susana Gomes, Laidson Paes Armengaud, Jean Miragaia, Maria Coelho, Ana Varela Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis |
title | Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis |
title_full | Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis |
title_fullStr | Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis |
title_full_unstemmed | Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis |
title_short | Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis |
title_sort | skin-to-blood ph shift triggers metabolome and proteome global remodelling in staphylococcus epidermidis |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554481/ https://www.ncbi.nlm.nih.gov/pubmed/36246270 http://dx.doi.org/10.3389/fmicb.2022.1000737 |
work_keys_str_mv | AT goncalvesluisgafeira skintobloodphshifttriggersmetabolomeandproteomeglobalremodellinginstaphylococcusepidermidis AT santossusana skintobloodphshifttriggersmetabolomeandproteomeglobalremodellinginstaphylococcusepidermidis AT gomeslaidsonpaes skintobloodphshifttriggersmetabolomeandproteomeglobalremodellinginstaphylococcusepidermidis AT armengaudjean skintobloodphshifttriggersmetabolomeandproteomeglobalremodellinginstaphylococcusepidermidis AT miragaiamaria skintobloodphshifttriggersmetabolomeandproteomeglobalremodellinginstaphylococcusepidermidis AT coelhoanavarela skintobloodphshifttriggersmetabolomeandproteomeglobalremodellinginstaphylococcusepidermidis |