Cargando…
DETexT: An SNV detection enhancement for low read depth by integrating mutational signatures into TextCNN
Detecting SNV at very low read depths helps to reduce sequencing requirements, lowers sequencing costs, and aids in the early screening, diagnosis, and treatment of cancer. However, the accuracy of SNV detection is significantly reduced at read depths below ×34 due to the lack of a sufficient number...
Autor principal: | Zheng, Tian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554618/ https://www.ncbi.nlm.nih.gov/pubmed/36246660 http://dx.doi.org/10.3389/fgene.2022.943972 |
Ejemplares similares
-
DeteX: A highly accurate software for detecting SNV and InDel in single and paired NGS data in cancer research
por: Cui, Yunlong, et al.
Publicado: (2023) -
Improving Ponzi Scheme Contract Detection Using Multi-Channel TextCNN and Transformer
por: Chen, Yizhou, et al.
Publicado: (2021) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Text Matching in Insurance Question-Answering Community Based on an Integrated BiLSTM-TextCNN Model Fusing Multi-Feature
por: Li, Zhaohui, et al.
Publicado: (2023) -
DeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature Figures
por: Yin, Xu-Cheng, et al.
Publicado: (2015)