Cargando…

Computational approach investigation bioactive molecules from Saussurea Costus plant as SARS-CoV-2 main protease inhibitors using reverse docking, molecular dynamics simulation, and pharmacokinetic ADMET parameters

SARS-COV-2 virus causes (COVID-19) disease; it has become a global pandemic since 2019 and has negatively affected all aspects of human life. Scientists have made great efforts to find a reliable cure, vaccine, or treatment for this emerging disease. Efforts have been directed towards using medicina...

Descripción completa

Detalles Bibliográficos
Autores principales: Hajji, Halima, Alaqarbeh, Marwa, Lakhlifi, Tahar, Ajana, Mohammed Aziz, Alsakhen, Nada, Bouachrine, Mohammed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554895/
https://www.ncbi.nlm.nih.gov/pubmed/36257276
http://dx.doi.org/10.1016/j.compbiomed.2022.106209
Descripción
Sumario:SARS-COV-2 virus causes (COVID-19) disease; it has become a global pandemic since 2019 and has negatively affected all aspects of human life. Scientists have made great efforts to find a reliable cure, vaccine, or treatment for this emerging disease. Efforts have been directed towards using medicinal plants as alternative medicines, as the active chemical compounds in them have been discovered as potential antiviral or anti-inflammatory agents. In this research, the potential of Saussurea costus (S. Costus) or QUST Al Hindi chemical consistent as potential antiviral agents was investigated by using computational methods such as Reverse Docking, ADMET, and Molecular Dynamics with different proteases COVID-19 such as PDB: 2GZ9; 6LU7; 7AOL, 6Y2E, 6Y84. The results of Reverse Docking the complex between 6LU7 proteases and Cynaropicrin compound being the best complex, as the same result, is achieved by molecular dynamics. Also, the toxicity testing result from ADMET method proved that the complex is the least toxic and the safest possible drug. In addition, 6LU7-Cynaropicrin complex obeyed Lipinski rule; it formed ≤5 H-bond donors and ≤10 H bond acceptors, MW < 500 Daltons, and octanol/water partition coefficient <5.