Cargando…

Origin of the polychromatic photoluminescence of zeolite confined Ag clusters: temperature- and co-cation-dependent luminescence

Zeolite confined silver clusters (AgCLs) have attracted extensive attention due to their remarkable luminescent properties, but the elucidation of the underlying photophysical processes and especially the excited-state dynamics remains a challenge. Herein, we investigate the bright photoluminescence...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Li, Keshavarz, Masoumeh, Romolini, Giacomo, Dieu, Bjorn, Hofkens, Johan, de Jong, Flip, Fron, Eduard, Roeffaers, Maarten B. J., Van der Auweraer, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555561/
https://www.ncbi.nlm.nih.gov/pubmed/36320393
http://dx.doi.org/10.1039/d2sc03197c
_version_ 1784806893283180544
author Sun, Li
Keshavarz, Masoumeh
Romolini, Giacomo
Dieu, Bjorn
Hofkens, Johan
de Jong, Flip
Fron, Eduard
Roeffaers, Maarten B. J.
Van der Auweraer, Mark
author_facet Sun, Li
Keshavarz, Masoumeh
Romolini, Giacomo
Dieu, Bjorn
Hofkens, Johan
de Jong, Flip
Fron, Eduard
Roeffaers, Maarten B. J.
Van der Auweraer, Mark
author_sort Sun, Li
collection PubMed
description Zeolite confined silver clusters (AgCLs) have attracted extensive attention due to their remarkable luminescent properties, but the elucidation of the underlying photophysical processes and especially the excited-state dynamics remains a challenge. Herein, we investigate the bright photoluminescence of AgCLs confined in Linde Type A zeolites (LTA) by systematically varying the temperature (298–77 K) and co-cation composition (Li/Na) and examining their respective influence on the steady-state and time-resolved photoluminescence. The observed polychromatic emission of the tetrahedral Ag(4)(H(2)O)(n)(2+) clusters ranges from orange to violet and three distinct emitting species are identified, corresponding to three long-lived triplet states populated consecutively and separated by a small energy barrier. These long-lived species are at the origin of the polychromatic luminescence with high photoluminescence quantum yields. Furthermore, the Li-content dependence of decay times points to the importance of guest–host–guest interactions in tuning the luminescent properties with a 43% decrease of the dominating decay time by increasing Li content. Based on our findings, a simplified model for the photophysical kinetics is proposed that identifies the excited-state processes. The results outlined here pave the way for a rational design of confined metal clusters in various frames and inspire the specified applications of Ag-zeolites.
format Online
Article
Text
id pubmed-9555561
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-95555612022-10-31 Origin of the polychromatic photoluminescence of zeolite confined Ag clusters: temperature- and co-cation-dependent luminescence Sun, Li Keshavarz, Masoumeh Romolini, Giacomo Dieu, Bjorn Hofkens, Johan de Jong, Flip Fron, Eduard Roeffaers, Maarten B. J. Van der Auweraer, Mark Chem Sci Chemistry Zeolite confined silver clusters (AgCLs) have attracted extensive attention due to their remarkable luminescent properties, but the elucidation of the underlying photophysical processes and especially the excited-state dynamics remains a challenge. Herein, we investigate the bright photoluminescence of AgCLs confined in Linde Type A zeolites (LTA) by systematically varying the temperature (298–77 K) and co-cation composition (Li/Na) and examining their respective influence on the steady-state and time-resolved photoluminescence. The observed polychromatic emission of the tetrahedral Ag(4)(H(2)O)(n)(2+) clusters ranges from orange to violet and three distinct emitting species are identified, corresponding to three long-lived triplet states populated consecutively and separated by a small energy barrier. These long-lived species are at the origin of the polychromatic luminescence with high photoluminescence quantum yields. Furthermore, the Li-content dependence of decay times points to the importance of guest–host–guest interactions in tuning the luminescent properties with a 43% decrease of the dominating decay time by increasing Li content. Based on our findings, a simplified model for the photophysical kinetics is proposed that identifies the excited-state processes. The results outlined here pave the way for a rational design of confined metal clusters in various frames and inspire the specified applications of Ag-zeolites. The Royal Society of Chemistry 2022-08-24 /pmc/articles/PMC9555561/ /pubmed/36320393 http://dx.doi.org/10.1039/d2sc03197c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Sun, Li
Keshavarz, Masoumeh
Romolini, Giacomo
Dieu, Bjorn
Hofkens, Johan
de Jong, Flip
Fron, Eduard
Roeffaers, Maarten B. J.
Van der Auweraer, Mark
Origin of the polychromatic photoluminescence of zeolite confined Ag clusters: temperature- and co-cation-dependent luminescence
title Origin of the polychromatic photoluminescence of zeolite confined Ag clusters: temperature- and co-cation-dependent luminescence
title_full Origin of the polychromatic photoluminescence of zeolite confined Ag clusters: temperature- and co-cation-dependent luminescence
title_fullStr Origin of the polychromatic photoluminescence of zeolite confined Ag clusters: temperature- and co-cation-dependent luminescence
title_full_unstemmed Origin of the polychromatic photoluminescence of zeolite confined Ag clusters: temperature- and co-cation-dependent luminescence
title_short Origin of the polychromatic photoluminescence of zeolite confined Ag clusters: temperature- and co-cation-dependent luminescence
title_sort origin of the polychromatic photoluminescence of zeolite confined ag clusters: temperature- and co-cation-dependent luminescence
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555561/
https://www.ncbi.nlm.nih.gov/pubmed/36320393
http://dx.doi.org/10.1039/d2sc03197c
work_keys_str_mv AT sunli originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence
AT keshavarzmasoumeh originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence
AT romolinigiacomo originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence
AT dieubjorn originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence
AT hofkensjohan originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence
AT dejongflip originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence
AT froneduard originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence
AT roeffaersmaartenbj originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence
AT vanderauweraermark originofthepolychromaticphotoluminescenceofzeoliteconfinedagclusterstemperatureandcocationdependentluminescence