Cargando…

Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries

Technical bottlenecks of polyselenide shuttling and material volume variation significantly hamper the development of emerging sodium–selenium (Na–Se) batteries. The nanopore structure of substrate materials is demonstrated to play a vital role in stabilizing Se cathodes and approaching superior Na-...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Xiang Long, Zhang, Xiaofeng, Yi, Mingjie, Wang, Ye, Zhang, Shaohui, Chong, Shaokun, Liu, Hua Kun, Dou, Shi Xue, Wang, Zhiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555568/
https://www.ncbi.nlm.nih.gov/pubmed/36320390
http://dx.doi.org/10.1039/d2sc04648b
_version_ 1784806895023816704
author Huang, Xiang Long
Zhang, Xiaofeng
Yi, Mingjie
Wang, Ye
Zhang, Shaohui
Chong, Shaokun
Liu, Hua Kun
Dou, Shi Xue
Wang, Zhiming
author_facet Huang, Xiang Long
Zhang, Xiaofeng
Yi, Mingjie
Wang, Ye
Zhang, Shaohui
Chong, Shaokun
Liu, Hua Kun
Dou, Shi Xue
Wang, Zhiming
author_sort Huang, Xiang Long
collection PubMed
description Technical bottlenecks of polyselenide shuttling and material volume variation significantly hamper the development of emerging sodium–selenium (Na–Se) batteries. The nanopore structure of substrate materials is demonstrated to play a vital role in stabilizing Se cathodes and approaching superior Na-ion storage properties. Herein, an ideal nanorod-like trimodal hierarchical porous carbon (THPC) host is fabricated through a facile one-step carbonization method for advanced Na–Se batteries. The THPC possesses a trimodal nanopore structure encompassing micropores, mesopores, and macropores, and functions as a good accommodator of Se molecules, a reservoir of polyselenide intermediates, a buffer for volume expansion of Se species during sodiation, and a promoter for electron/ion transfer in the electrochemical process. As a result, Na–Se batteries assembled with the Se–THPC composite cathode realize high utilization of Se, fast redox kinetics, and excellent cyclability. Furthermore, the Na-ion storage mechanism of the well-designed Se–THPC composite is profoundly revealed by in situ visual characterization techniques.
format Online
Article
Text
id pubmed-9555568
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-95555682022-10-31 Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries Huang, Xiang Long Zhang, Xiaofeng Yi, Mingjie Wang, Ye Zhang, Shaohui Chong, Shaokun Liu, Hua Kun Dou, Shi Xue Wang, Zhiming Chem Sci Chemistry Technical bottlenecks of polyselenide shuttling and material volume variation significantly hamper the development of emerging sodium–selenium (Na–Se) batteries. The nanopore structure of substrate materials is demonstrated to play a vital role in stabilizing Se cathodes and approaching superior Na-ion storage properties. Herein, an ideal nanorod-like trimodal hierarchical porous carbon (THPC) host is fabricated through a facile one-step carbonization method for advanced Na–Se batteries. The THPC possesses a trimodal nanopore structure encompassing micropores, mesopores, and macropores, and functions as a good accommodator of Se molecules, a reservoir of polyselenide intermediates, a buffer for volume expansion of Se species during sodiation, and a promoter for electron/ion transfer in the electrochemical process. As a result, Na–Se batteries assembled with the Se–THPC composite cathode realize high utilization of Se, fast redox kinetics, and excellent cyclability. Furthermore, the Na-ion storage mechanism of the well-designed Se–THPC composite is profoundly revealed by in situ visual characterization techniques. The Royal Society of Chemistry 2022-09-13 /pmc/articles/PMC9555568/ /pubmed/36320390 http://dx.doi.org/10.1039/d2sc04648b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Huang, Xiang Long
Zhang, Xiaofeng
Yi, Mingjie
Wang, Ye
Zhang, Shaohui
Chong, Shaokun
Liu, Hua Kun
Dou, Shi Xue
Wang, Zhiming
Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries
title Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries
title_full Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries
title_fullStr Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries
title_full_unstemmed Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries
title_short Trimodal hierarchical porous carbon nanorods enable high-performance Na–Se batteries
title_sort trimodal hierarchical porous carbon nanorods enable high-performance na–se batteries
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555568/
https://www.ncbi.nlm.nih.gov/pubmed/36320390
http://dx.doi.org/10.1039/d2sc04648b
work_keys_str_mv AT huangxianglong trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries
AT zhangxiaofeng trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries
AT yimingjie trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries
AT wangye trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries
AT zhangshaohui trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries
AT chongshaokun trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries
AT liuhuakun trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries
AT doushixue trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries
AT wangzhiming trimodalhierarchicalporouscarbonnanorodsenablehighperformancenasebatteries