Cargando…
Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR
The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segment...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555672/ https://www.ncbi.nlm.nih.gov/pubmed/36223330 http://dx.doi.org/10.1371/journal.pone.0275033 |
_version_ | 1784806912177471488 |
---|---|
author | Gillot, Maxime Baquero, Baptiste Le, Celia Deleat-Besson, Romain Bianchi, Jonas Ruellas, Antonio Gurgel, Marcela Yatabe, Marilia Al Turkestani, Najla Najarian, Kayvan Soroushmehr, Reza Pieper, Steve Kikinis, Ron Paniagua, Beatriz Gryak, Jonathan Ioshida, Marcos Massaro, Camila Gomes, Liliane Oh, Heesoo Evangelista, Karine Chaves Junior, Cauby Maia Garib, Daniela Costa, Fábio Benavides, Erika Soki, Fabiana Fillion-Robin, Jean-Christophe Joshi, Hina Cevidanes, Lucia Prieto, Juan Carlos |
author_facet | Gillot, Maxime Baquero, Baptiste Le, Celia Deleat-Besson, Romain Bianchi, Jonas Ruellas, Antonio Gurgel, Marcela Yatabe, Marilia Al Turkestani, Najla Najarian, Kayvan Soroushmehr, Reza Pieper, Steve Kikinis, Ron Paniagua, Beatriz Gryak, Jonathan Ioshida, Marcos Massaro, Camila Gomes, Liliane Oh, Heesoo Evangelista, Karine Chaves Junior, Cauby Maia Garib, Daniela Costa, Fábio Benavides, Erika Soki, Fabiana Fillion-Robin, Jean-Christophe Joshi, Hina Cevidanes, Lucia Prieto, Juan Carlos |
author_sort | Gillot, Maxime |
collection | PubMed |
description | The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segmentation in about 5 minutes that would otherwise require an average of 7h of manual work by experienced clinicians. This work focuses on the integration of the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with several parameters from different centers for a generalized clinical application. Our results on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to 0.962±0.02. Our code is available on our public GitHub repository. |
format | Online Article Text |
id | pubmed-9555672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95556722022-10-13 Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR Gillot, Maxime Baquero, Baptiste Le, Celia Deleat-Besson, Romain Bianchi, Jonas Ruellas, Antonio Gurgel, Marcela Yatabe, Marilia Al Turkestani, Najla Najarian, Kayvan Soroushmehr, Reza Pieper, Steve Kikinis, Ron Paniagua, Beatriz Gryak, Jonathan Ioshida, Marcos Massaro, Camila Gomes, Liliane Oh, Heesoo Evangelista, Karine Chaves Junior, Cauby Maia Garib, Daniela Costa, Fábio Benavides, Erika Soki, Fabiana Fillion-Robin, Jean-Christophe Joshi, Hina Cevidanes, Lucia Prieto, Juan Carlos PLoS One Research Article The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segmentation in about 5 minutes that would otherwise require an average of 7h of manual work by experienced clinicians. This work focuses on the integration of the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with several parameters from different centers for a generalized clinical application. Our results on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to 0.962±0.02. Our code is available on our public GitHub repository. Public Library of Science 2022-10-12 /pmc/articles/PMC9555672/ /pubmed/36223330 http://dx.doi.org/10.1371/journal.pone.0275033 Text en © 2022 Gillot et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Gillot, Maxime Baquero, Baptiste Le, Celia Deleat-Besson, Romain Bianchi, Jonas Ruellas, Antonio Gurgel, Marcela Yatabe, Marilia Al Turkestani, Najla Najarian, Kayvan Soroushmehr, Reza Pieper, Steve Kikinis, Ron Paniagua, Beatriz Gryak, Jonathan Ioshida, Marcos Massaro, Camila Gomes, Liliane Oh, Heesoo Evangelista, Karine Chaves Junior, Cauby Maia Garib, Daniela Costa, Fábio Benavides, Erika Soki, Fabiana Fillion-Robin, Jean-Christophe Joshi, Hina Cevidanes, Lucia Prieto, Juan Carlos Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR |
title | Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR |
title_full | Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR |
title_fullStr | Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR |
title_full_unstemmed | Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR |
title_short | Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR |
title_sort | automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3d unetr |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555672/ https://www.ncbi.nlm.nih.gov/pubmed/36223330 http://dx.doi.org/10.1371/journal.pone.0275033 |
work_keys_str_mv | AT gillotmaxime automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT baquerobaptiste automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT lecelia automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT deleatbessonromain automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT bianchijonas automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT ruellasantonio automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT gurgelmarcela automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT yatabemarilia automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT alturkestaninajla automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT najariankayvan automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT soroushmehrreza automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT piepersteve automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT kikinisron automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT paniaguabeatriz automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT gryakjonathan automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT ioshidamarcos automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT massarocamila automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT gomesliliane automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT ohheesoo automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT evangelistakarine automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT chavesjuniorcaubymaia automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT garibdaniela automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT costafabio automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT benavideserika automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT sokifabiana automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT fillionrobinjeanchristophe automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT joshihina automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT cevidaneslucia automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr AT prietojuancarlos automaticmultianatomicalskullstructuresegmentationofconebeamcomputedtomographyscansusing3dunetr |