Cargando…

Hamiltonian engineering of spin-orbit–coupled fermions in a Wannier-Stark optical lattice clock

Engineering a Hamiltonian system with tunable interactions provides opportunities to optimize performance for quantum sensing and explore emerging phenomena of many-body systems. An optical lattice clock based on partially delocalized Wannier-Stark states in a gravity-tilted shallow lattice supports...

Descripción completa

Detalles Bibliográficos
Autores principales: Aeppli, Alexander, Chu, Anjun, Bothwell, Tobias, Kennedy, Colin J., Kedar, Dhruv, He, Peiru, Rey, Ana Maria, Ye, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555777/
https://www.ncbi.nlm.nih.gov/pubmed/36223457
http://dx.doi.org/10.1126/sciadv.adc9242
_version_ 1784806932118241280
author Aeppli, Alexander
Chu, Anjun
Bothwell, Tobias
Kennedy, Colin J.
Kedar, Dhruv
He, Peiru
Rey, Ana Maria
Ye, Jun
author_facet Aeppli, Alexander
Chu, Anjun
Bothwell, Tobias
Kennedy, Colin J.
Kedar, Dhruv
He, Peiru
Rey, Ana Maria
Ye, Jun
author_sort Aeppli, Alexander
collection PubMed
description Engineering a Hamiltonian system with tunable interactions provides opportunities to optimize performance for quantum sensing and explore emerging phenomena of many-body systems. An optical lattice clock based on partially delocalized Wannier-Stark states in a gravity-tilted shallow lattice supports superior quantum coherence and adjustable interactions via spin-orbit coupling, thus presenting a powerful spin model realization. The relative strength of the on-site and off-site interactions can be tuned to achieve a zero density shift at a “magic” lattice depth. This mechanism, together with a large number of atoms, enables the demonstration of the most stable atomic clock while minimizing a key systematic uncertainty related to atomic density. Interactions can also be maximized by driving off-site Wannier-Stark transitions, realizing a ferromagnetic to paramagnetic dynamical phase transition.
format Online
Article
Text
id pubmed-9555777
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-95557772022-10-26 Hamiltonian engineering of spin-orbit–coupled fermions in a Wannier-Stark optical lattice clock Aeppli, Alexander Chu, Anjun Bothwell, Tobias Kennedy, Colin J. Kedar, Dhruv He, Peiru Rey, Ana Maria Ye, Jun Sci Adv Physical and Materials Sciences Engineering a Hamiltonian system with tunable interactions provides opportunities to optimize performance for quantum sensing and explore emerging phenomena of many-body systems. An optical lattice clock based on partially delocalized Wannier-Stark states in a gravity-tilted shallow lattice supports superior quantum coherence and adjustable interactions via spin-orbit coupling, thus presenting a powerful spin model realization. The relative strength of the on-site and off-site interactions can be tuned to achieve a zero density shift at a “magic” lattice depth. This mechanism, together with a large number of atoms, enables the demonstration of the most stable atomic clock while minimizing a key systematic uncertainty related to atomic density. Interactions can also be maximized by driving off-site Wannier-Stark transitions, realizing a ferromagnetic to paramagnetic dynamical phase transition. American Association for the Advancement of Science 2022-10-12 /pmc/articles/PMC9555777/ /pubmed/36223457 http://dx.doi.org/10.1126/sciadv.adc9242 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Aeppli, Alexander
Chu, Anjun
Bothwell, Tobias
Kennedy, Colin J.
Kedar, Dhruv
He, Peiru
Rey, Ana Maria
Ye, Jun
Hamiltonian engineering of spin-orbit–coupled fermions in a Wannier-Stark optical lattice clock
title Hamiltonian engineering of spin-orbit–coupled fermions in a Wannier-Stark optical lattice clock
title_full Hamiltonian engineering of spin-orbit–coupled fermions in a Wannier-Stark optical lattice clock
title_fullStr Hamiltonian engineering of spin-orbit–coupled fermions in a Wannier-Stark optical lattice clock
title_full_unstemmed Hamiltonian engineering of spin-orbit–coupled fermions in a Wannier-Stark optical lattice clock
title_short Hamiltonian engineering of spin-orbit–coupled fermions in a Wannier-Stark optical lattice clock
title_sort hamiltonian engineering of spin-orbit–coupled fermions in a wannier-stark optical lattice clock
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555777/
https://www.ncbi.nlm.nih.gov/pubmed/36223457
http://dx.doi.org/10.1126/sciadv.adc9242
work_keys_str_mv AT aepplialexander hamiltonianengineeringofspinorbitcoupledfermionsinawannierstarkopticallatticeclock
AT chuanjun hamiltonianengineeringofspinorbitcoupledfermionsinawannierstarkopticallatticeclock
AT bothwelltobias hamiltonianengineeringofspinorbitcoupledfermionsinawannierstarkopticallatticeclock
AT kennedycolinj hamiltonianengineeringofspinorbitcoupledfermionsinawannierstarkopticallatticeclock
AT kedardhruv hamiltonianengineeringofspinorbitcoupledfermionsinawannierstarkopticallatticeclock
AT hepeiru hamiltonianengineeringofspinorbitcoupledfermionsinawannierstarkopticallatticeclock
AT reyanamaria hamiltonianengineeringofspinorbitcoupledfermionsinawannierstarkopticallatticeclock
AT yejun hamiltonianengineeringofspinorbitcoupledfermionsinawannierstarkopticallatticeclock