Cargando…
Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555852/ https://www.ncbi.nlm.nih.gov/pubmed/36206146 http://dx.doi.org/10.1097/CIN.0000000000000943 |
_version_ | 1784806944373997568 |
---|---|
author | Alderden, Jenny Kennerly, Susan M. Wilson, Andrew Dimas, Jonathan McFarland, Casey Yap, David Y. Zhao, Lucy Yap, Tracey L. |
author_facet | Alderden, Jenny Kennerly, Susan M. Wilson, Andrew Dimas, Jonathan McFarland, Casey Yap, David Y. Zhao, Lucy Yap, Tracey L. |
author_sort | Alderden, Jenny |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-9555852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-95558522022-10-14 Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients Alderden, Jenny Kennerly, Susan M. Wilson, Andrew Dimas, Jonathan McFarland, Casey Yap, David Y. Zhao, Lucy Yap, Tracey L. Comput Inform Nurs DEPARTMENTS: CIN Plus Lippincott Williams & Wilkins 2022-10-05 /pmc/articles/PMC9555852/ /pubmed/36206146 http://dx.doi.org/10.1097/CIN.0000000000000943 Text en Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved. This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections. |
spellingShingle | DEPARTMENTS: CIN Plus Alderden, Jenny Kennerly, Susan M. Wilson, Andrew Dimas, Jonathan McFarland, Casey Yap, David Y. Zhao, Lucy Yap, Tracey L. Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients |
title | Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients |
title_full | Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients |
title_fullStr | Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients |
title_full_unstemmed | Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients |
title_short | Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients |
title_sort | explainable artificial intelligence for predicting hospital-acquired pressure injuries in covid-19–positive critical care patients |
topic | DEPARTMENTS: CIN Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555852/ https://www.ncbi.nlm.nih.gov/pubmed/36206146 http://dx.doi.org/10.1097/CIN.0000000000000943 |
work_keys_str_mv | AT alderdenjenny explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients AT kennerlysusanm explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients AT wilsonandrew explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients AT dimasjonathan explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients AT mcfarlandcasey explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients AT yapdavidy explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients AT zhaolucy explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients AT yaptraceyl explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients |