Cargando…

Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients

Detalles Bibliográficos
Autores principales: Alderden, Jenny, Kennerly, Susan M., Wilson, Andrew, Dimas, Jonathan, McFarland, Casey, Yap, David Y., Zhao, Lucy, Yap, Tracey L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555852/
https://www.ncbi.nlm.nih.gov/pubmed/36206146
http://dx.doi.org/10.1097/CIN.0000000000000943
_version_ 1784806944373997568
author Alderden, Jenny
Kennerly, Susan M.
Wilson, Andrew
Dimas, Jonathan
McFarland, Casey
Yap, David Y.
Zhao, Lucy
Yap, Tracey L.
author_facet Alderden, Jenny
Kennerly, Susan M.
Wilson, Andrew
Dimas, Jonathan
McFarland, Casey
Yap, David Y.
Zhao, Lucy
Yap, Tracey L.
author_sort Alderden, Jenny
collection PubMed
description
format Online
Article
Text
id pubmed-9555852
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-95558522022-10-14 Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients Alderden, Jenny Kennerly, Susan M. Wilson, Andrew Dimas, Jonathan McFarland, Casey Yap, David Y. Zhao, Lucy Yap, Tracey L. Comput Inform Nurs DEPARTMENTS: CIN Plus Lippincott Williams & Wilkins 2022-10-05 /pmc/articles/PMC9555852/ /pubmed/36206146 http://dx.doi.org/10.1097/CIN.0000000000000943 Text en Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved. This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.
spellingShingle DEPARTMENTS: CIN Plus
Alderden, Jenny
Kennerly, Susan M.
Wilson, Andrew
Dimas, Jonathan
McFarland, Casey
Yap, David Y.
Zhao, Lucy
Yap, Tracey L.
Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
title Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
title_full Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
title_fullStr Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
title_full_unstemmed Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
title_short Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
title_sort explainable artificial intelligence for predicting hospital-acquired pressure injuries in covid-19–positive critical care patients
topic DEPARTMENTS: CIN Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555852/
https://www.ncbi.nlm.nih.gov/pubmed/36206146
http://dx.doi.org/10.1097/CIN.0000000000000943
work_keys_str_mv AT alderdenjenny explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients
AT kennerlysusanm explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients
AT wilsonandrew explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients
AT dimasjonathan explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients
AT mcfarlandcasey explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients
AT yapdavidy explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients
AT zhaolucy explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients
AT yaptraceyl explainableartificialintelligenceforpredictinghospitalacquiredpressureinjuriesincovid19positivecriticalcarepatients