Cargando…
Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
Autores principales: | Alderden, Jenny, Kennerly, Susan M., Wilson, Andrew, Dimas, Jonathan, McFarland, Casey, Yap, David Y., Zhao, Lucy, Yap, Tracey L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555852/ https://www.ncbi.nlm.nih.gov/pubmed/36206146 http://dx.doi.org/10.1097/CIN.0000000000000943 |
Ejemplares similares
-
“Would You Like to Skype With Your Daughter?”: A Qualitative Feasibility Study of Video Telecommunication in a Psychogeriatric Hospital
por: Niebler, Raphael, et al.
Publicado: (2019) -
Nursing Informatics and Epigenetics: An Interdisciplinary Approach to Patient-Focused Research
por: Milner, John J., et al.
Publicado: (2022) -
Translation and Cross-cultural Validation of the Canadian Nurse Informatics Competency Assessment Scale for French Canadian Nurses
por: Frégeau, Hélène, et al.
Publicado: (2023) -
Hospital acquired pressure injury prediction in surgical critical care patients
por: Alderden, Jenny, et al.
Publicado: (2021) -
Nursing Assessment of Pressure Injury Risk with the Braden Scale Validated against Sensor-Based Measurement of Movement
por: Kennerly, Susan M., et al.
Publicado: (2022)