Cargando…
Machine learning corroborates subjective ratings of walking and balance difficulty in multiple sclerosis
Machine learning can discern meaningful information from large datasets. Applying machine learning techniques to raw sensor data from instrumented walkways could automatically detect subtle changes in walking and balance. Multiple sclerosis (MS) is a neurological disorder in which patients report va...
Autores principales: | Hu, Wenting, Combden, Owen, Jiang, Xianta, Buragadda, Syamala, Newell, Caitlin J., Williams, Maria C., Critch, Amber L., Ploughman, Michelle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556653/ https://www.ncbi.nlm.nih.gov/pubmed/36248625 http://dx.doi.org/10.3389/frai.2022.952312 |
Ejemplares similares
-
Machine learning classification of multiple sclerosis patients based on raw data from an instrumented walkway
por: Hu, Wenting, et al.
Publicado: (2022) -
Temporal network embedding framework with causal anonymous walks representations
por: Makarov, Ilya, et al.
Publicado: (2022) -
Tuning Fairness by Balancing Target Labels
por: Kehrenberg, Thomas, et al.
Publicado: (2020) -
Balancing Performance and Human Autonomy With Implicit Guidance Agent
por: Nakahashi, Ryo, et al.
Publicado: (2021) -
Design of news recommendation model based on sub-attention news encoder
por: Zhang, Wenting
Publicado: (2023)