Cargando…
Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs
Although high temperatures influence gut health, data on underlying mechanisms remains scant. Using a pig model, this study performed a global analysis on how chronic heat stress affects the transport and immune function of the gut through transcriptome, proteome, microbial diversity and flow cytome...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556788/ https://www.ncbi.nlm.nih.gov/pubmed/36263409 http://dx.doi.org/10.1016/j.aninu.2022.08.008 |
_version_ | 1784807150059520000 |
---|---|
author | Tang, Shanlong Xie, Jingjing Fang, Wei Wen, Xiaobin Yin, Chang Meng, Qingshi Zhong, Ruqing Chen, Liang Zhang, Hongfu |
author_facet | Tang, Shanlong Xie, Jingjing Fang, Wei Wen, Xiaobin Yin, Chang Meng, Qingshi Zhong, Ruqing Chen, Liang Zhang, Hongfu |
author_sort | Tang, Shanlong |
collection | PubMed |
description | Although high temperatures influence gut health, data on underlying mechanisms remains scant. Using a pig model, this study performed a global analysis on how chronic heat stress affects the transport and immune function of the gut through transcriptome, proteome, microbial diversity and flow cytometry. A total of 27 pigs with similar body weights were assigned into 3 groups, control (Con) group (23 °C), chronic heat stressed (HS) group (33 °C), and pair-fed (PF) group, in a controlled environment for 21 days. Our results showed that pigs in the HS group had reduced growth performance and diminished height of ileal villi (P < 0.01). Transcriptome and proteome analyses demonstrated notable modification of expression of nutrients and ion transport-related transporters and gut mechanical barrier-related genes by chronic heart stress (P < 0.05), suggesting damage of transport functions and the gut barrier. Chronic heat stress-induced endoplasmic reticulum stress also increased the synthesis of misfolded proteins, leading to upregulation of misfolded protein degradation and synthesis, as well as vesicle transport disorder (P < 0.05). Energy supply processes were enhanced in the mitochondrion (P < 0.05) to maintain biological processes with high energy demands. Furthermore, chronic heat stress activated complement cascade response-related genes and proteins in the gut mucosa (P < 0.05). Our flow cytometry assays showed that the proportion of gut lymphocytes (CD4(+) T cells, T cells, B cells in Peyer's patch lymphocytes and CD4(+) CD25(+) T cells in intraepithelial lymphocytes) were significantly altered in the HS group pigs (P < 0.05). In addition, the occurrence of gut microbial dysbiosis in the HS group pigs was characterized by increased potential pathogens (e.g., Asteroleplasma, Shuttleworthia, Mycoplasma) and suppression of beneficial bacteria (e.g., Coprococcus and Aeriscardovia), which are associated with gut immune function. Altogether, our data demonstrated that chronic heat stress induced gut transport and immune function disorder associated with endoplasmic reticulum stress in growing pigs. |
format | Online Article Text |
id | pubmed-9556788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-95567882022-10-18 Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs Tang, Shanlong Xie, Jingjing Fang, Wei Wen, Xiaobin Yin, Chang Meng, Qingshi Zhong, Ruqing Chen, Liang Zhang, Hongfu Anim Nutr Original Research Article Although high temperatures influence gut health, data on underlying mechanisms remains scant. Using a pig model, this study performed a global analysis on how chronic heat stress affects the transport and immune function of the gut through transcriptome, proteome, microbial diversity and flow cytometry. A total of 27 pigs with similar body weights were assigned into 3 groups, control (Con) group (23 °C), chronic heat stressed (HS) group (33 °C), and pair-fed (PF) group, in a controlled environment for 21 days. Our results showed that pigs in the HS group had reduced growth performance and diminished height of ileal villi (P < 0.01). Transcriptome and proteome analyses demonstrated notable modification of expression of nutrients and ion transport-related transporters and gut mechanical barrier-related genes by chronic heart stress (P < 0.05), suggesting damage of transport functions and the gut barrier. Chronic heat stress-induced endoplasmic reticulum stress also increased the synthesis of misfolded proteins, leading to upregulation of misfolded protein degradation and synthesis, as well as vesicle transport disorder (P < 0.05). Energy supply processes were enhanced in the mitochondrion (P < 0.05) to maintain biological processes with high energy demands. Furthermore, chronic heat stress activated complement cascade response-related genes and proteins in the gut mucosa (P < 0.05). Our flow cytometry assays showed that the proportion of gut lymphocytes (CD4(+) T cells, T cells, B cells in Peyer's patch lymphocytes and CD4(+) CD25(+) T cells in intraepithelial lymphocytes) were significantly altered in the HS group pigs (P < 0.05). In addition, the occurrence of gut microbial dysbiosis in the HS group pigs was characterized by increased potential pathogens (e.g., Asteroleplasma, Shuttleworthia, Mycoplasma) and suppression of beneficial bacteria (e.g., Coprococcus and Aeriscardovia), which are associated with gut immune function. Altogether, our data demonstrated that chronic heat stress induced gut transport and immune function disorder associated with endoplasmic reticulum stress in growing pigs. KeAi Publishing 2022-08-18 /pmc/articles/PMC9556788/ /pubmed/36263409 http://dx.doi.org/10.1016/j.aninu.2022.08.008 Text en © 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Tang, Shanlong Xie, Jingjing Fang, Wei Wen, Xiaobin Yin, Chang Meng, Qingshi Zhong, Ruqing Chen, Liang Zhang, Hongfu Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs |
title | Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs |
title_full | Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs |
title_fullStr | Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs |
title_full_unstemmed | Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs |
title_short | Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs |
title_sort | chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556788/ https://www.ncbi.nlm.nih.gov/pubmed/36263409 http://dx.doi.org/10.1016/j.aninu.2022.08.008 |
work_keys_str_mv | AT tangshanlong chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs AT xiejingjing chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs AT fangwei chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs AT wenxiaobin chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs AT yinchang chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs AT mengqingshi chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs AT zhongruqing chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs AT chenliang chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs AT zhanghongfu chronicheatstressinducesthedisorderofguttransportandimmunefunctionassociatedwithendoplasmicreticulumstressingrowingpigs |