Cargando…
Detecting glaucoma from multi-modal data using probabilistic deep learning
OBJECTIVE: To assess the accuracy of probabilistic deep learning models to discriminate normal eyes and eyes with glaucoma from fundus photographs and visual fields. DESIGN: Algorithm development for discriminating normal and glaucoma eyes using data from multicenter, cross-sectional, case-control s...
Autores principales: | Huang, Xiaoqin, Sun, Jian, Gupta, Krati, Montesano, Giovanni, Crabb, David P., Garway-Heath, David F., Brusini, Paolo, Lanzetta, Paolo, Oddone, Francesco, Turpin, Andrew, McKendrick, Allison M., Johnson, Chris A., Yousefi, Siamak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556968/ https://www.ncbi.nlm.nih.gov/pubmed/36250081 http://dx.doi.org/10.3389/fmed.2022.923096 |
Ejemplares similares
-
Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning
por: Montesano, Giovanni, et al.
Publicado: (2023) -
Suprathreshold Approaches to Mapping the Visual Field in Advanced Glaucoma
por: Denniss, Jonathan, et al.
Publicado: (2023) -
Validating Trend-Based End Points for Neuroprotection Trials in Glaucoma
por: Montesano, Giovanni, et al.
Publicado: (2023) -
The direction of research into visual disability and quality of life in glaucoma
por: Glen, Fiona C, et al.
Publicado: (2011) -
Letter to the Editor: Expected Improvement in Structure–Function Agreement With Macular Displacement Models
por: Montesano, Giovanni, et al.
Publicado: (2022)