Cargando…

Architecture inspired structure engineering toward carbon nanotube hybrid for microwave absorption promotion

Constructing sophisticated 3D structure has been shown to be fruitful in developing carbon nanotubes (CNTs) microwave absorbers (MAs). However, issues with the unclear electromagnetic (EM) responding synergy of CNTs toward substrate and the limited dissipation property caused by the large dense CNTs...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Can, Shi, Yuning, Li, Xueai, Wu, Hongjing, Shen, Youfei, Guo, Wanchun, Tian, Kesong, Wang, Haiyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557038/
https://www.ncbi.nlm.nih.gov/pubmed/36248731
http://dx.doi.org/10.1016/j.isci.2022.105203
Descripción
Sumario:Constructing sophisticated 3D structure has been shown to be fruitful in developing carbon nanotubes (CNTs) microwave absorbers (MAs). However, issues with the unclear electromagnetic (EM) responding synergy of CNTs toward substrate and the limited dissipation property caused by the large dense CNTs networks throughout the reported models still need to be resolved. Inspired by the creeper-window-room-structured architecture, an analogous conformal nanostructure of amorphous carbon/CNTs (N-AC/CNTs) hybrid is constructed through an in situ autocatalytic planting approach. By this model, not only the inheritance of frequency dependence characteristic but the co-inheritance of lossy behavior and impedance matching is demonstrated. Moreover, by virtue of the unique structure, a synergistic reinforcing dielectric loss from conductive loss and dielectric polarization was introduced. Therefore, N-AC/CNTs-750 shows impressive EM performance. This work hereby unveils the synergy of EM response from CNTs toward substrate, and provides a pioneering insight into developing architecture-inspired structure engineering to construct high-performance MAs.