Cargando…

An ontology-driven framework for knowledge representation of digital extortion attacks

With the COVID-19 pandemic and the growing influence of the Internet in critical sectors of industry and society, cyberattacks have not only not declined, but have risen sharply. In the meantime, ransomware is at the forefront of the most devastating threats that have launched the lucrative illegal...

Descripción completa

Detalles Bibliográficos
Autores principales: Keshavarzi, Masoudeh, Ghaffary, Hamid Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557090/
https://www.ncbi.nlm.nih.gov/pubmed/36268220
http://dx.doi.org/10.1016/j.chb.2022.107520
Descripción
Sumario:With the COVID-19 pandemic and the growing influence of the Internet in critical sectors of industry and society, cyberattacks have not only not declined, but have risen sharply. In the meantime, ransomware is at the forefront of the most devastating threats that have launched the lucrative illegal business. Due to the proliferation and variety of ransomware forays, there is a need for a new theory of categories. The intricacy and multiplicity of components involved in digital extortions entails the construction of a knowledge representation system that is able to organize large volumes of information from heterogeneous sources in a formal structured format and infer new knowledge from it. This paper suggests and develops a dedicated ontology of digital blackmails, called Rantology, with a particular focus on ransomware assaults. The logic coded in this ontology allows to assess the maliciousness of programs based on various factors, including called API functions and their behaviors. The proposed framework can be used to facilitate interoperability between cybersecurity experts and knowledge-based systems, and identify sensitive points for surveillance. The evaluation results based on several criteria confirm the adequacy of the suggested ontology in terms of clarity, modularity, consistency, coverage and inheritance richness.