Cargando…
Predicting local persistence/recurrence after radiation therapy for head and neck cancer from PET/CT using a multi-objective, multi-classifier radiomics model
OBJECTIVES: Accurate identifying head and neck squamous cell cancer (HNSCC) patients at high risk of local persistence/recurrence (P/R) is of importance for personalized patient management. Here we developed a multi-objective, multi-classifier radiomics model for early HNSCC local P/R prediction bas...
Autores principales: | Zhang, Qiongwen, Wang, Kai, Zhou, Zhiguo, Qin, Genggeng, Wang, Lei, Li, Ping, Sher, David, Jiang, Steve, Wang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557184/ https://www.ncbi.nlm.nih.gov/pubmed/36248979 http://dx.doi.org/10.3389/fonc.2022.955712 |
Ejemplares similares
-
From Head and Neck Tumour and Lymph Node Segmentation to Survival Prediction on PET/CT: An End-to-End Framework Featuring Uncertainty, Fairness, and Multi-Region Multi-Modal Radiomics
por: Salahuddin, Zohaib, et al.
Publicado: (2023) -
Context-Aware Saliency Guided Radiomics: Application to Prediction of Outcome and HPV-Status from Multi-Center PET/CT Images of Head and Neck Cancer
por: Lv, Wenbing, et al.
Publicado: (2022) -
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach
por: Burgos, Ninon, et al.
Publicado: (2015) -
Prognostic value of (18)F-FDG PET/CT-based radiomics combining dosiomics and dose volume histogram for head and neck cancer
por: Wang, Bingzhen, et al.
Publicado: (2023)