Cargando…
Virtual reality boxing: Gaze-contingent manipulation of stimulus properties using blur
It has been reported that behavior of experts and novices in various sporting tasks is impervious to the introduction of blur. However, studies have used diverse methods of blurring the visual stimulus (i.e., dioptric blur and Gaussian blur), and tasks that did not always preserve the normal percept...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557204/ https://www.ncbi.nlm.nih.gov/pubmed/36248589 http://dx.doi.org/10.3389/fpsyg.2022.902043 |
Sumario: | It has been reported that behavior of experts and novices in various sporting tasks is impervious to the introduction of blur. However, studies have used diverse methods of blurring the visual stimulus (i.e., dioptric blur and Gaussian blur), and tasks that did not always preserve the normal perception-action coupling. In the current study, we developed a novel experimental protocol to examine the effect of different levels of Gaussian blur on interception performance and eye gaze data using an immersive VR task. Importantly, this provided a realistic simulation of a real-world boxing scenario (e.g., the presence of a feint prior to the onset of different combinations of punches) in which expert combat athletes (n = 18) experienced a first-person, adaptive viewpoint of the visual environment, which could be blurred according to their gaze location (central blur, peripheral blur, no blur). We found that participants exhibited similar interception performance in the presence of central blur or peripheral blur compared to a control condition with no blur. However, interception performance was significantly better with a central blur compared to peripheral blur. Eye gaze data indicated that although participants fixated at similar areas of interest irrespective of the presence of blur, fixation duration was significantly longer with a strong level of blur in the peripheral viewing condition than all levels of central blur and the control condition. These findings can be explained by relocating attention to different areas of the environment, which thereby influenced the perception of salient information. Participants also performed better on the first punch of a sequence preceded by a foot feint compared to arm feint or no feint. Still, irrespective of feint type, performance was significantly better on the second and third punch compared to the first punch. These findings are consistent with participants using additional information from the opponent's body movements and situational probabilities to increase performance as the sequence of punches developed. Overall, these are the first evidence for the use of VR as a means to examine gaze-contingent manipulations of the environment, and hence highlight the potential for facilitating learning and transfer to a real sporting situations. |
---|