Cargando…
Analyses of ‘change scores’ do not estimate causal effects in observational data
BACKGROUND: In longitudinal data, it is common to create ‘change scores’ by subtracting measurements taken at baseline from those taken at follow-up, and then to analyse the resulting ‘change’ as the outcome variable. In observational data, this approach can produce misleading causal-effect estimate...
Autores principales: | Tennant, Peter W G, Arnold, Kellyn F, Ellison, George T H, Gilthorpe, Mark S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557845/ https://www.ncbi.nlm.nih.gov/pubmed/34100077 http://dx.doi.org/10.1093/ije/dyab050 |
Ejemplares similares
-
A causal inference perspective on the analysis of compositional data
por: Arnold, Kellyn F, et al.
Publicado: (2020) -
DAG-informed regression modelling, agent-based modelling and microsimulation modelling: a critical comparison of methods for causal inference
por: Arnold, Kellyn F, et al.
Publicado: (2019) -
Adjustment for energy intake in nutritional research: a causal inference perspective
por: Tomova, Georgia D, et al.
Publicado: (2021) -
Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations
por: Tennant, Peter W G, et al.
Publicado: (2020) -
Target parameters and bias in non-causal change-score analyses with measurement errors
por: Sjölander, Arvid, et al.
Publicado: (2023)