Cargando…

Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system

This work presents an experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system, taking as input variables the water-air flow ratio, water renewal time and area-volume ratio of the water tank. The aeration process response variables are defined in terms of oxygen transfer a...

Descripción completa

Detalles Bibliográficos
Autores principales: De Oro Ochoa, Esteban, Carmona García, Mauricio, Durango Padilla, Néstor, Martínez Remolina, Andrés
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557901/
https://www.ncbi.nlm.nih.gov/pubmed/36247160
http://dx.doi.org/10.1016/j.heliyon.2022.e10824
_version_ 1784807330075901952
author De Oro Ochoa, Esteban
Carmona García, Mauricio
Durango Padilla, Néstor
Martínez Remolina, Andrés
author_facet De Oro Ochoa, Esteban
Carmona García, Mauricio
Durango Padilla, Néstor
Martínez Remolina, Andrés
author_sort De Oro Ochoa, Esteban
collection PubMed
description This work presents an experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system, taking as input variables the water-air flow ratio, water renewal time and area-volume ratio of the water tank. The aeration process response variables are defined in terms of oxygen transfer and aeration efficiency through the standard volumetric mass transfer coefficient (K(L)a(20)), standard oxygen transfer rate (SOTR), and standard aeration efficiency (SAE). Two methods of air injection were analyzed: 1. Air injection in the throat chamber of the Venturi generator; 2. air supplying in the suction side of the hydraulic pump of the aeration system. Experimental results indicate that the water renewal time variable (RT) is a statistically significant factor with respect to the K(L)a(20), which can be maximized by decreasing RT. The effects of the variable flow ratio (FR) are greater than the effects of renewal time and area-volume ratio (AVR) concerning SOTR and SAE, indicating a maximum response with a minimum flow ratio, using the Venturi-Vortex microbubble generator. When the flow ratio decreases, the air flow increases, generating and transferring a greater amount of microbubbles (MB) into the water. It was found that increasing the air flow produced an increase in the standard oxygen transfer rate SOTR and standard aeration efficiency SAE. Results allow concluding that the injection of the air flow from the suction side of the pump promotes the generation of microbubbles (MB) for a maximum air flow allowed by the system. SOTR and SAE could be maximized whit the flow ratio factor and the Venturi-Vortex generator, supplying air flow from the suction side of the hydraulic pump.
format Online
Article
Text
id pubmed-9557901
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95579012022-10-14 Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system De Oro Ochoa, Esteban Carmona García, Mauricio Durango Padilla, Néstor Martínez Remolina, Andrés Heliyon Research Article This work presents an experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system, taking as input variables the water-air flow ratio, water renewal time and area-volume ratio of the water tank. The aeration process response variables are defined in terms of oxygen transfer and aeration efficiency through the standard volumetric mass transfer coefficient (K(L)a(20)), standard oxygen transfer rate (SOTR), and standard aeration efficiency (SAE). Two methods of air injection were analyzed: 1. Air injection in the throat chamber of the Venturi generator; 2. air supplying in the suction side of the hydraulic pump of the aeration system. Experimental results indicate that the water renewal time variable (RT) is a statistically significant factor with respect to the K(L)a(20), which can be maximized by decreasing RT. The effects of the variable flow ratio (FR) are greater than the effects of renewal time and area-volume ratio (AVR) concerning SOTR and SAE, indicating a maximum response with a minimum flow ratio, using the Venturi-Vortex microbubble generator. When the flow ratio decreases, the air flow increases, generating and transferring a greater amount of microbubbles (MB) into the water. It was found that increasing the air flow produced an increase in the standard oxygen transfer rate SOTR and standard aeration efficiency SAE. Results allow concluding that the injection of the air flow from the suction side of the pump promotes the generation of microbubbles (MB) for a maximum air flow allowed by the system. SOTR and SAE could be maximized whit the flow ratio factor and the Venturi-Vortex generator, supplying air flow from the suction side of the hydraulic pump. Elsevier 2022-10-01 /pmc/articles/PMC9557901/ /pubmed/36247160 http://dx.doi.org/10.1016/j.heliyon.2022.e10824 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
De Oro Ochoa, Esteban
Carmona García, Mauricio
Durango Padilla, Néstor
Martínez Remolina, Andrés
Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system
title Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system
title_full Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system
title_fullStr Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system
title_full_unstemmed Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system
title_short Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system
title_sort design and experimental evaluation of a venturi and venturi-vortex microbubble aeration system
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557901/
https://www.ncbi.nlm.nih.gov/pubmed/36247160
http://dx.doi.org/10.1016/j.heliyon.2022.e10824
work_keys_str_mv AT deoroochoaesteban designandexperimentalevaluationofaventuriandventurivortexmicrobubbleaerationsystem
AT carmonagarciamauricio designandexperimentalevaluationofaventuriandventurivortexmicrobubbleaerationsystem
AT durangopadillanestor designandexperimentalevaluationofaventuriandventurivortexmicrobubbleaerationsystem
AT martinezremolinaandres designandexperimentalevaluationofaventuriandventurivortexmicrobubbleaerationsystem