Cargando…
Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport
Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host‐specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of pr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558156/ https://www.ncbi.nlm.nih.gov/pubmed/35728923 http://dx.doi.org/10.1111/joa.13719 |
_version_ | 1784807385303351296 |
---|---|
author | Adalbert, Robert Cahalan, Stephen Hopkins, Eleanor L. Almuhanna, Abdulaziz Loreto, Andrea Pór, Erzsébet Körmöczy, Laura Perkins, Justin Coleman, Michael P. Piercy, Richard J. |
author_facet | Adalbert, Robert Cahalan, Stephen Hopkins, Eleanor L. Almuhanna, Abdulaziz Loreto, Andrea Pór, Erzsébet Körmöczy, Laura Perkins, Justin Coleman, Michael P. Piercy, Richard J. |
author_sort | Adalbert, Robert |
collection | PubMed |
description | Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host‐specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG‐derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species‐specific differences in axonal transport and survival. |
format | Online Article Text |
id | pubmed-9558156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95581562022-10-16 Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport Adalbert, Robert Cahalan, Stephen Hopkins, Eleanor L. Almuhanna, Abdulaziz Loreto, Andrea Pór, Erzsébet Körmöczy, Laura Perkins, Justin Coleman, Michael P. Piercy, Richard J. J Anat Original Article Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host‐specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG‐derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species‐specific differences in axonal transport and survival. John Wiley and Sons Inc. 2022-06-21 2022-11 /pmc/articles/PMC9558156/ /pubmed/35728923 http://dx.doi.org/10.1111/joa.13719 Text en © 2022 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Adalbert, Robert Cahalan, Stephen Hopkins, Eleanor L. Almuhanna, Abdulaziz Loreto, Andrea Pór, Erzsébet Körmöczy, Laura Perkins, Justin Coleman, Michael P. Piercy, Richard J. Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport |
title | Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport |
title_full | Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport |
title_fullStr | Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport |
title_full_unstemmed | Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport |
title_short | Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport |
title_sort | cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558156/ https://www.ncbi.nlm.nih.gov/pubmed/35728923 http://dx.doi.org/10.1111/joa.13719 |
work_keys_str_mv | AT adalbertrobert cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT cahalanstephen cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT hopkinseleanorl cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT almuhannaabdulaziz cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT loretoandrea cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT porerzsebet cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT kormoczylaura cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT perkinsjustin cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT colemanmichaelp cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport AT piercyrichardj cultureddissociatedprimarydorsalrootganglionneuronsfromadulthorsesenablestudyofaxonaltransport |