Cargando…
Phototunable Absorption and Nonlinear Optical Properties of Thermally Stable Dihydroazulene–Vinylheptafulvene Photochrome Pair
[Image: see text] The UV–vis absorption characteristics and nonlinear optical properties of a series of substituted dihydroazulene (DHA)/vinylheptafulvene (VHF) photoswitches are investigated by applying quantum calculations. Introduction of substituents at the seven-membered ring resulted in signif...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558242/ https://www.ncbi.nlm.nih.gov/pubmed/36249387 http://dx.doi.org/10.1021/acsomega.2c04231 |
_version_ | 1784807396566106112 |
---|---|
author | Bayach, Imene Al-Faiyz, Yasair S. S. Alkhalifah, Mohammed A. Almutlaq, Nadiah Ayub, Khurshid Sheikh, Nadeem S. |
author_facet | Bayach, Imene Al-Faiyz, Yasair S. S. Alkhalifah, Mohammed A. Almutlaq, Nadiah Ayub, Khurshid Sheikh, Nadeem S. |
author_sort | Bayach, Imene |
collection | PubMed |
description | [Image: see text] The UV–vis absorption characteristics and nonlinear optical properties of a series of substituted dihydroazulene (DHA)/vinylheptafulvene (VHF) photoswitches are investigated by applying quantum calculations. Introduction of substituents at the seven-membered ring resulted in significant changes in their absorption properties depending on the nature and position of the substituent. Electron-donating groups at positions 5, 6, 7, and 8 generally exhibited red shifts with respect to the parent compound. However, the steric effect at positions 8a and 4 is responsible for the loss of planarity and conjugation, which generally leads to blue shifts. In contrast, any electron-withdrawing group, particularly at positions 8a and 4, would cause a blue shift. The presence of bulky groups at position 8a results in a loss of planarity and, as a result, a decrease in electronic conjugation within the molecule, resulting in a blue shift in the maximum absorption. When it comes to halogens, the red shift is directly correlated to the nucleophilicity; the higher the nucleophilicity, the larger the red shift. Regarding hyperpolarizability, the charge separation induces higher hyperpolarizabilities for all substituted VHFs compared to the corresponding DHAs, resulting in a much higher NLO response. In addition, for all DHA and VHF, the highest values of hyperpolarizabilities are calculated for 6-substituted systems. Finally, the objective of this detailed theoretical investigation is to continue exploring the photophysical properties of DHA–VHF through structural modifications. |
format | Online Article Text |
id | pubmed-9558242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95582422022-10-14 Phototunable Absorption and Nonlinear Optical Properties of Thermally Stable Dihydroazulene–Vinylheptafulvene Photochrome Pair Bayach, Imene Al-Faiyz, Yasair S. S. Alkhalifah, Mohammed A. Almutlaq, Nadiah Ayub, Khurshid Sheikh, Nadeem S. ACS Omega [Image: see text] The UV–vis absorption characteristics and nonlinear optical properties of a series of substituted dihydroazulene (DHA)/vinylheptafulvene (VHF) photoswitches are investigated by applying quantum calculations. Introduction of substituents at the seven-membered ring resulted in significant changes in their absorption properties depending on the nature and position of the substituent. Electron-donating groups at positions 5, 6, 7, and 8 generally exhibited red shifts with respect to the parent compound. However, the steric effect at positions 8a and 4 is responsible for the loss of planarity and conjugation, which generally leads to blue shifts. In contrast, any electron-withdrawing group, particularly at positions 8a and 4, would cause a blue shift. The presence of bulky groups at position 8a results in a loss of planarity and, as a result, a decrease in electronic conjugation within the molecule, resulting in a blue shift in the maximum absorption. When it comes to halogens, the red shift is directly correlated to the nucleophilicity; the higher the nucleophilicity, the larger the red shift. Regarding hyperpolarizability, the charge separation induces higher hyperpolarizabilities for all substituted VHFs compared to the corresponding DHAs, resulting in a much higher NLO response. In addition, for all DHA and VHF, the highest values of hyperpolarizabilities are calculated for 6-substituted systems. Finally, the objective of this detailed theoretical investigation is to continue exploring the photophysical properties of DHA–VHF through structural modifications. American Chemical Society 2022-09-27 /pmc/articles/PMC9558242/ /pubmed/36249387 http://dx.doi.org/10.1021/acsomega.2c04231 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Bayach, Imene Al-Faiyz, Yasair S. S. Alkhalifah, Mohammed A. Almutlaq, Nadiah Ayub, Khurshid Sheikh, Nadeem S. Phototunable Absorption and Nonlinear Optical Properties of Thermally Stable Dihydroazulene–Vinylheptafulvene Photochrome Pair |
title | Phototunable Absorption and Nonlinear Optical Properties
of Thermally Stable Dihydroazulene–Vinylheptafulvene Photochrome
Pair |
title_full | Phototunable Absorption and Nonlinear Optical Properties
of Thermally Stable Dihydroazulene–Vinylheptafulvene Photochrome
Pair |
title_fullStr | Phototunable Absorption and Nonlinear Optical Properties
of Thermally Stable Dihydroazulene–Vinylheptafulvene Photochrome
Pair |
title_full_unstemmed | Phototunable Absorption and Nonlinear Optical Properties
of Thermally Stable Dihydroazulene–Vinylheptafulvene Photochrome
Pair |
title_short | Phototunable Absorption and Nonlinear Optical Properties
of Thermally Stable Dihydroazulene–Vinylheptafulvene Photochrome
Pair |
title_sort | phototunable absorption and nonlinear optical properties
of thermally stable dihydroazulene–vinylheptafulvene photochrome
pair |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558242/ https://www.ncbi.nlm.nih.gov/pubmed/36249387 http://dx.doi.org/10.1021/acsomega.2c04231 |
work_keys_str_mv | AT bayachimene phototunableabsorptionandnonlinearopticalpropertiesofthermallystabledihydroazulenevinylheptafulvenephotochromepair AT alfaiyzyasairss phototunableabsorptionandnonlinearopticalpropertiesofthermallystabledihydroazulenevinylheptafulvenephotochromepair AT alkhalifahmohammeda phototunableabsorptionandnonlinearopticalpropertiesofthermallystabledihydroazulenevinylheptafulvenephotochromepair AT almutlaqnadiah phototunableabsorptionandnonlinearopticalpropertiesofthermallystabledihydroazulenevinylheptafulvenephotochromepair AT ayubkhurshid phototunableabsorptionandnonlinearopticalpropertiesofthermallystabledihydroazulenevinylheptafulvenephotochromepair AT sheikhnadeems phototunableabsorptionandnonlinearopticalpropertiesofthermallystabledihydroazulenevinylheptafulvenephotochromepair |