Cargando…
Real-world performance, long-term efficacy, and absence of bias in the artificial intelligence enhanced electrocardiogram to detect left ventricular systolic dysfunction
AIMS: Some artificial intelligence models applied in medical practice require ongoing retraining, introduce unintended racial bias, or have variable performance among different subgroups of patients. We assessed the real-world performance of the artificial intelligence-enhanced electrocardiogram to...
Autores principales: | Harmon, David M, Carter, Rickey E, Cohen-Shelly, Michal, Svatikova, Anna, Adedinsewo, Demilade A, Noseworthy, Peter A, Kapa, Suraj, Lopez-Jimenez, Francisco, Friedman, Paul A, Attia, Zachi I |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558265/ https://www.ncbi.nlm.nih.gov/pubmed/36247412 http://dx.doi.org/10.1093/ehjdh/ztac028 |
Ejemplares similares
-
External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction
por: Attia, Itzhak Zachi, et al.
Publicado: (2021) -
Artificial Intelligence ECG to Detect Left Ventricular Dysfunction in COVID-19: A Case Series
por: Attia, Zachi I., et al.
Publicado: (2020) -
Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model
por: Adedinsewo, Demilade A, et al.
Publicado: (2021) -
The 12-lead electrocardiogram as a biomarker of biological age
por: Ladejobi, Adetola O, et al.
Publicado: (2021) -
Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: A proof of concept study
por: Attia, Zachi I., et al.
Publicado: (2018)