Cargando…
Computational Protocol to Evaluate Electron–Phonon Interactions Within Density Matrix Perturbation Theory
[Image: see text] We present a computational protocol, based on density matrix perturbation theory, to obtain non-adiabatic, frequency-dependent electron–phonon self-energies for molecules and solids. Our approach enables the evaluation of electron–phonon interaction using hybrid functionals, for sp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558376/ https://www.ncbi.nlm.nih.gov/pubmed/36126338 http://dx.doi.org/10.1021/acs.jctc.2c00579 |
Sumario: | [Image: see text] We present a computational protocol, based on density matrix perturbation theory, to obtain non-adiabatic, frequency-dependent electron–phonon self-energies for molecules and solids. Our approach enables the evaluation of electron–phonon interaction using hybrid functionals, for spin-polarized systems, and the computational overhead to include dynamical and non-adiabatic terms in the evaluation of electron–phonon self-energies is negligible. We discuss results for molecules, as well as pristine and defective solids. |
---|