Cargando…

ARID1A deficiency reverses the response to anti-PD(L)1 therapy in EGFR-mutant lung adenocarcinoma by enhancing autophagy-inhibited type I interferon production

INTRODUCTION: EGFR mutations in non-small cell lung cancer (NSCLC) are associated with a poor response to immune checkpoint inhibitors (ICIs), and only 20% of NSCLC patients harboring EGFR mutations benefit from immunotherapy. Novel biomarkers or therapeutics are needed to predict NSCLC prognosis an...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Dantong, Qian, Haili, Wang, Jinsong, Xie, Tongji, Teng, Fei, Li, Junling, Xing, Puyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558404/
https://www.ncbi.nlm.nih.gov/pubmed/36229854
http://dx.doi.org/10.1186/s12964-022-00958-5
Descripción
Sumario:INTRODUCTION: EGFR mutations in non-small cell lung cancer (NSCLC) are associated with a poor response to immune checkpoint inhibitors (ICIs), and only 20% of NSCLC patients harboring EGFR mutations benefit from immunotherapy. Novel biomarkers or therapeutics are needed to predict NSCLC prognosis and enhance the efficacy of ICIs in NSCLC patients harboring EGFR mutations, especially lung adenocarcinoma (LUAD) patients, who account for approximately 40–50% of all NSCLC cases. METHODS: An ARID1A-knockdown (ARID1A-KD) EGFR-mutant LUAD cell line was constructed using lentivirus. RNA-seq and mass spectrometry were performed. Western blotting and IHC were used for protein expression evaluation. Effects of 3-MA and rapamycin on cells were explored. Immunofluorescence assays were used for immune cell infiltration examination. RESULTS: ARID1A expression was negatively associated with immune cell infiltration and immune scores for ICIs in LUAD with EGFR mutations. In vitro experiments suggested that ARID1A-KD activates the EGFR/PI3K/Akt/mTOR pathway and inhibits autophagy, which attenuates the inhibition of Rig-I-like receptor pathway activity and type I interferon production in EGFR-mutant LUAD cells. In addition, 3-MA upregulated production of type I interferon in EGFR-mutant LUAD cells, with an similar effect to ARID1A-KD. On the other hand, rapamycin attenuated the enhanced production of type I interferon in ARID1A-KD EGFR-mutant LUAD cells. ARID1A function appears to influence the tumor immune microenvironment and response to ICIs. CONCLUSION: ARID1A deficiency reverses response to ICIs in EGFR-mutant LUAD by enhancing autophagy-inhibited type I interferon production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12964-022-00958-5.