Cargando…

A Comparison of Aerodynamic Parameters in Two Subspecies of the American Barn Owl (Tyto furcata)

SIMPLE SUMMARY: Morphology and function depend on the ecological niche in which an animal lives. Barn owls, occurring on all continents, occupy a nocturnal niche. These birds prey mainly on small rodents but include other small vertebrates and invertebrates in the diet. The size of the barn-owl spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner, Hermann, Piedrahita, Paolo Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558544/
https://www.ncbi.nlm.nih.gov/pubmed/36230274
http://dx.doi.org/10.3390/ani12192532
Descripción
Sumario:SIMPLE SUMMARY: Morphology and function depend on the ecological niche in which an animal lives. Barn owls, occurring on all continents, occupy a nocturnal niche. These birds prey mainly on small rodents but include other small vertebrates and invertebrates in the diet. The size of the barn-owl species and subspecies varies considerably. The American continent harbors the species Tyto furcata. The body mass of the subspecies in North America (T.f.pratincola) is about a factor of two higher than that of the subspecies living on the Galapagos archipelago (T.f.puncatissima). We asked how this difference translates into aerodynamic parameters. The key question was whether there is so-called similarity scaling or not. In other words, whether important aerodynamic parameters scale according to body mass. This is called isometric scaling. Deviation from isometric scaling is called allometric scaling. If we use the subspecies from the continent as a reference, we find that the Galapagos barn owl has relatively larger wings than expected from isometric scaling. This translates into a lower wing loading in punctatissima than in pratincola. A lower wing loading means higher maneuverability. We speculate that the higher maneuverability allows the Galapagos owl to catch smaller prey, especially insects. ABSTRACT: Aerodynamic parameters, such as wing loading, are important indicators of flight maneuverability. We studied two subspecies of the American Barn owl (Tyto furcata), the North American subspecies, T.f.pratincola, and the Galapagos subspecies, T.f.punctatissima, with respect to aerodynamic parameters and compared our findings with those in other owl and bird species. The body mass of T.f.pratincola is about two times higher than that of T.f.punctatissima. Wing loading between the two subspecies scales allometrically. Wing loading in T.f.pratincola is about 50% higher than in T.f.punctatissima. The scaling of wing length is not statistically different from the prediction for isometric scaling. By contrast, the wing chord in T.f.punctatissima is larger than predicted by isometric scaling, as is the wing area. The scaling of wing loading observed here for T.f.punctatissima differs considerably from the scaling in other owl and bird species as available in the literature. We speculate that the allometric scaling helps T.f.punctatissima to catch smaller prey such, as insects that are found in many pellets of T.f.punctatissima, despite the fact that in both subspecies, small rodents make up most of the diet.