Cargando…

PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐Myc‐mediated positive feedback loop

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent malignancies worldwide and is characterized by unfavorable prognosis, high lymph node metastasis and early recurrence. However, the molecular events regulating HNSCC tumorigenesis remain poorly understood. Therefor...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xinyuan, Shu, Dalong, Sun, Wenjuan, Si, Shanshan, Ran, Wei, Guo, Bing, Cui, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558684/
https://www.ncbi.nlm.nih.gov/pubmed/36002342
http://dx.doi.org/10.1002/cac2.12349
_version_ 1784807495480377344
author Zhao, Xinyuan
Shu, Dalong
Sun, Wenjuan
Si, Shanshan
Ran, Wei
Guo, Bing
Cui, Li
author_facet Zhao, Xinyuan
Shu, Dalong
Sun, Wenjuan
Si, Shanshan
Ran, Wei
Guo, Bing
Cui, Li
author_sort Zhao, Xinyuan
collection PubMed
description BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent malignancies worldwide and is characterized by unfavorable prognosis, high lymph node metastasis and early recurrence. However, the molecular events regulating HNSCC tumorigenesis remain poorly understood. Therefore, uncovering the underlying mechanisms is urgently needed to identify novel and promising therapeutic targets for HNSCC. In this study, we aimed to explore the role of pleckstrin‐2 (PLEK2) in regulating HNSCC tumorigenesis. METHODS: The expression pattern of PLEK2 and its clinical significance in HNSCC were determined by analyzing publicly assessable datasets and our own independent HNSCC cohort. In vitro and in vivo experiments, including cell proliferation, colony formation, Matrigel invasion, tumor sphere formation, ALDEFLUOR, Western blotting assays and xenograft mouse models, were used to investigate the role of PLEK2 in regulating the malignant behaviors of HNSCC cells. The underlying molecular mechanisms for the tumor‐promoting role of PLEK2 were elucidated using co‐immunoprecipitation, cycloheximide chase analysis, ubiquitination assays, chromatin immunoprecipitation‐quantitative polymerase chain reaction, luciferase reporter assays and rescue experiments. RESULTS: The expression levels of PLEK2 mRNA and protein were significantly increased in HNSCC tissues, and PLEK2 overexpression was strongly associated with poor overall survival and therapeutic resistance. Additionally, PLEK2 was important for maintaining the proliferation, invasion, epithelial‐mesenchymal transition, cancer stemness and tumorigenesis of HNSCC cells and could alter the cellular metabolism of the cancer cells. Mechanistically, PLEK2 interacted with c‐Myc and reduced the association of F‐box and WD repeat domain containing 7 (FBXW7) with c‐Myc, thereby avoiding ubiquitination and subsequent proteasome‐mediated degradation of c‐Myc. Moreover, the c‐Myc signaling activated by PLEK2 was important for sustaining the aggressive malignant phenotypes and tumorigenesis of HNSCC cells. c‐Myc also directly bounded to the PLEK2 promoter and activated its transcription, forming a positive feedback loop. CONCLUSIONS: Collectively, these findings uncover a previously unknown molecular basis of PLEK2‐enhanced c‐Myc signaling in HNSCC, suggesting that PLEK2 may represent a promising therapeutic target for treating HNSCC.
format Online
Article
Text
id pubmed-9558684
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-95586842022-10-16 PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐Myc‐mediated positive feedback loop Zhao, Xinyuan Shu, Dalong Sun, Wenjuan Si, Shanshan Ran, Wei Guo, Bing Cui, Li Cancer Commun (Lond) Original Articles BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent malignancies worldwide and is characterized by unfavorable prognosis, high lymph node metastasis and early recurrence. However, the molecular events regulating HNSCC tumorigenesis remain poorly understood. Therefore, uncovering the underlying mechanisms is urgently needed to identify novel and promising therapeutic targets for HNSCC. In this study, we aimed to explore the role of pleckstrin‐2 (PLEK2) in regulating HNSCC tumorigenesis. METHODS: The expression pattern of PLEK2 and its clinical significance in HNSCC were determined by analyzing publicly assessable datasets and our own independent HNSCC cohort. In vitro and in vivo experiments, including cell proliferation, colony formation, Matrigel invasion, tumor sphere formation, ALDEFLUOR, Western blotting assays and xenograft mouse models, were used to investigate the role of PLEK2 in regulating the malignant behaviors of HNSCC cells. The underlying molecular mechanisms for the tumor‐promoting role of PLEK2 were elucidated using co‐immunoprecipitation, cycloheximide chase analysis, ubiquitination assays, chromatin immunoprecipitation‐quantitative polymerase chain reaction, luciferase reporter assays and rescue experiments. RESULTS: The expression levels of PLEK2 mRNA and protein were significantly increased in HNSCC tissues, and PLEK2 overexpression was strongly associated with poor overall survival and therapeutic resistance. Additionally, PLEK2 was important for maintaining the proliferation, invasion, epithelial‐mesenchymal transition, cancer stemness and tumorigenesis of HNSCC cells and could alter the cellular metabolism of the cancer cells. Mechanistically, PLEK2 interacted with c‐Myc and reduced the association of F‐box and WD repeat domain containing 7 (FBXW7) with c‐Myc, thereby avoiding ubiquitination and subsequent proteasome‐mediated degradation of c‐Myc. Moreover, the c‐Myc signaling activated by PLEK2 was important for sustaining the aggressive malignant phenotypes and tumorigenesis of HNSCC cells. c‐Myc also directly bounded to the PLEK2 promoter and activated its transcription, forming a positive feedback loop. CONCLUSIONS: Collectively, these findings uncover a previously unknown molecular basis of PLEK2‐enhanced c‐Myc signaling in HNSCC, suggesting that PLEK2 may represent a promising therapeutic target for treating HNSCC. John Wiley and Sons Inc. 2022-08-24 /pmc/articles/PMC9558684/ /pubmed/36002342 http://dx.doi.org/10.1002/cac2.12349 Text en © 2022 The Authors. Cancer Communications published by John Wiley & Sons Australia, Ltd. on behalf of Sun Yat‐sen University Cancer Center. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Zhao, Xinyuan
Shu, Dalong
Sun, Wenjuan
Si, Shanshan
Ran, Wei
Guo, Bing
Cui, Li
PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐Myc‐mediated positive feedback loop
title PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐Myc‐mediated positive feedback loop
title_full PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐Myc‐mediated positive feedback loop
title_fullStr PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐Myc‐mediated positive feedback loop
title_full_unstemmed PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐Myc‐mediated positive feedback loop
title_short PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐Myc‐mediated positive feedback loop
title_sort plek2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c‐myc‐mediated positive feedback loop
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558684/
https://www.ncbi.nlm.nih.gov/pubmed/36002342
http://dx.doi.org/10.1002/cac2.12349
work_keys_str_mv AT zhaoxinyuan plek2promotescancerstemnessandtumorigenesisofheadandnecksquamouscellcarcinomaviathecmycmediatedpositivefeedbackloop
AT shudalong plek2promotescancerstemnessandtumorigenesisofheadandnecksquamouscellcarcinomaviathecmycmediatedpositivefeedbackloop
AT sunwenjuan plek2promotescancerstemnessandtumorigenesisofheadandnecksquamouscellcarcinomaviathecmycmediatedpositivefeedbackloop
AT sishanshan plek2promotescancerstemnessandtumorigenesisofheadandnecksquamouscellcarcinomaviathecmycmediatedpositivefeedbackloop
AT ranwei plek2promotescancerstemnessandtumorigenesisofheadandnecksquamouscellcarcinomaviathecmycmediatedpositivefeedbackloop
AT guobing plek2promotescancerstemnessandtumorigenesisofheadandnecksquamouscellcarcinomaviathecmycmediatedpositivefeedbackloop
AT cuili plek2promotescancerstemnessandtumorigenesisofheadandnecksquamouscellcarcinomaviathecmycmediatedpositivefeedbackloop