Cargando…

Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies

Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent “parts”, but instead a set of dependent and hierarchically nested entities resulting from...

Descripción completa

Detalles Bibliográficos
Autores principales: Porto, Diego S, Dahdul, Wasila M, Lapp, Hilmar, Balhoff, James P, Vision, Todd J, Mabee, Paula M, Uyeda, Josef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558846/
https://www.ncbi.nlm.nih.gov/pubmed/35285502
http://dx.doi.org/10.1093/sysbio/syac022
_version_ 1784807533130547200
author Porto, Diego S
Dahdul, Wasila M
Lapp, Hilmar
Balhoff, James P
Vision, Todd J
Mabee, Paula M
Uyeda, Josef
author_facet Porto, Diego S
Dahdul, Wasila M
Lapp, Hilmar
Balhoff, James P
Vision, Todd J
Mabee, Paula M
Uyeda, Josef
author_sort Porto, Diego S
collection PubMed
description Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent “parts”, but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies—structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here, we assess whether evolutionary patterns can explain the proximity of ontology-annotated characters within an ontology. To do so, we measure phylogenetic information across characters and evaluate if it matches the hierarchical structure given by ontological knowledge—in much the same way as across-species diversity structure is given by phylogeny. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to data sets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially explained by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that phylogenetic information does match ontology structure for some anatomical entities, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological data sets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may play a role in explaining it: phylogeny, development, or convergence. [Apidae; Bayesian phylogenetic information; Ostariophysi; Phenoscape; phylogenetic dissonance; semantic similarity.]
format Online
Article
Text
id pubmed-9558846
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-95588462022-10-18 Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies Porto, Diego S Dahdul, Wasila M Lapp, Hilmar Balhoff, James P Vision, Todd J Mabee, Paula M Uyeda, Josef Syst Biol Regular Articles Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent “parts”, but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies—structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here, we assess whether evolutionary patterns can explain the proximity of ontology-annotated characters within an ontology. To do so, we measure phylogenetic information across characters and evaluate if it matches the hierarchical structure given by ontological knowledge—in much the same way as across-species diversity structure is given by phylogeny. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to data sets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially explained by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that phylogenetic information does match ontology structure for some anatomical entities, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological data sets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may play a role in explaining it: phylogeny, development, or convergence. [Apidae; Bayesian phylogenetic information; Ostariophysi; Phenoscape; phylogenetic dissonance; semantic similarity.] Oxford University Press 2022-03-14 /pmc/articles/PMC9558846/ /pubmed/35285502 http://dx.doi.org/10.1093/sysbio/syac022 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Regular Articles
Porto, Diego S
Dahdul, Wasila M
Lapp, Hilmar
Balhoff, James P
Vision, Todd J
Mabee, Paula M
Uyeda, Josef
Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies
title Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies
title_full Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies
title_fullStr Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies
title_full_unstemmed Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies
title_short Assessing Bayesian Phylogenetic Information Content of Morphological Data Using Knowledge From Anatomy Ontologies
title_sort assessing bayesian phylogenetic information content of morphological data using knowledge from anatomy ontologies
topic Regular Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558846/
https://www.ncbi.nlm.nih.gov/pubmed/35285502
http://dx.doi.org/10.1093/sysbio/syac022
work_keys_str_mv AT portodiegos assessingbayesianphylogeneticinformationcontentofmorphologicaldatausingknowledgefromanatomyontologies
AT dahdulwasilam assessingbayesianphylogeneticinformationcontentofmorphologicaldatausingknowledgefromanatomyontologies
AT lapphilmar assessingbayesianphylogeneticinformationcontentofmorphologicaldatausingknowledgefromanatomyontologies
AT balhoffjamesp assessingbayesianphylogeneticinformationcontentofmorphologicaldatausingknowledgefromanatomyontologies
AT visiontoddj assessingbayesianphylogeneticinformationcontentofmorphologicaldatausingknowledgefromanatomyontologies
AT mabeepaulam assessingbayesianphylogeneticinformationcontentofmorphologicaldatausingknowledgefromanatomyontologies
AT uyedajosef assessingbayesianphylogeneticinformationcontentofmorphologicaldatausingknowledgefromanatomyontologies