Cargando…
Wild Boar Effects on Fungal Abundance and Guilds from Sporocarp Sampling in a Boreal Forest Ecosystem
SIMPLE SUMMARY: Native wild boar populations are expanding across Europe, causing concern due to their significant soil disturbances and considerable impact on ecosystems. However, little is known about how wild boar activities affect other organisms. This study investigated the effects of wild boar...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558969/ https://www.ncbi.nlm.nih.gov/pubmed/36230261 http://dx.doi.org/10.3390/ani12192521 |
Sumario: | SIMPLE SUMMARY: Native wild boar populations are expanding across Europe, causing concern due to their significant soil disturbances and considerable impact on ecosystems. However, little is known about how wild boar activities affect other organisms. This study investigated the effects of wild boars on the abundance of fungal sporocarps and their respective fungal guilds (i.e., symbiotic, saprophytic and pathogenic) in boreal forests in Sweden. We selected 11 forested sites in central Sweden: six with and five without the presence of wild boar. We determined the presence or absence of wild boar and rooting intensity at each site. Simultaneously, we investigated the abundance of fungal sporocarps and their fungal guilds. We found that the presence of wild boar and rooting intensity were associated with the abundance of fungal sporocarps. Wild boar rooting was positively correlated with saprotrophic fungi and negatively with symbiotic fungi. Pathogenic fungi were more abundant in plots with no rooting but in the presence of wild boar. We conclude that wild boar represents a recurrent disturbance agent and, based on sporocarp abundance, could eventually affect entire fungal populations. ABSTRACT: Native wild boar (Sus scrofa) populations are expanding across Europe. This is cause for concern in some areas where overabundant populations impact natural ecosystems and adjacent agronomic systems. To better manage the potential for impacts, managers require more information about how the species may affect other organisms. For example, information regarding the effect of wild boar on soil fungi for management application is lacking. Soil fungi play a fundamental role in ecosystems, driving essential ecological functions; acting as mycorrhizal symbionts, sustaining plant nutrition and providing defense; as saprotrophs, regulating the organic matter decomposition; or as plant pathogens, regulating plant fitness and survival. During autumn (Sep–Nov) 2018, we investigated the effects of wild boar (presence/absence and rooting intensity) on the abundance (number of individuals) of fungal sporocarps and their functional guilds (symbiotic, saprotrophic and pathogenic). We selected eleven forested sites (400–500 × 150–200 m) in central Sweden; six with and five without the presence of wild boar. Within each forest, we selected one transect (200 m long), and five plots (2 × 2 m each) for sites without wild boar, and ten plots for sites with boars (five within and five outside wild boar disturbances), to determine the relationship between the intensity of rooting and the abundance of sporocarps for three fungal guilds. We found that the presence of wild boar and rooting intensity were associated with the abundance of sporocarps. Interestingly, this relationship varied depending on the fungal guild analyzed, where wild boar rooting had a positive correlation with saprophytic sporocarps and a negative correlation with symbiotic sporocarps. Pathogenic fungi, in turn, were more abundant in undisturbed plots (no rooting) but located in areas with the presence of wild boar. Our results indicate that wild boar activities can potentially regulate the abundance of fungal sporocarps, with different impacts on fungal guilds. Therefore, wild boar can affect many essential ecosystem functions driven by soil fungi in boreal forests, such as positive effects on energy rotation and in creating mineral availability to plants, which could lead to increased diversity of plants in boreal forests. |
---|