Cargando…
Multi-Omics Analysis of GNL3L Expression, Prognosis, and Immune Value in Pan-Cancer
SIMPLE SUMMARY: Guanine nucleotide-binding protein-like 3-like (GNL3L) is a novel GTP-binding nucleolar protein. In this study, we analyzed the expression, prognosis, and immune roles of GNL3L in pan-cancer from multiple omics analyses. The final results showed that GNL3L is differentially expressed...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558978/ https://www.ncbi.nlm.nih.gov/pubmed/36230520 http://dx.doi.org/10.3390/cancers14194595 |
Sumario: | SIMPLE SUMMARY: Guanine nucleotide-binding protein-like 3-like (GNL3L) is a novel GTP-binding nucleolar protein. In this study, we analyzed the expression, prognosis, and immune roles of GNL3L in pan-cancer from multiple omics analyses. The final results showed that GNL3L is differentially expressed in a variety of cancers, plays a prognostic role, and has good immune value. Moreover, GNL3L may affect the occurrence of cancer through processes such as ribonucleoprotein, ribosomal RNA processing, and cell proliferation. At the same time, we established an esophageal cancer (ESCA) prediction model with strong predictive ability and proved that GNL3L can significantly affect the proliferation ability of esophageal cancer cells through clone formation assays. In conclusion, GNL3L is an important biomarker. ABSTRACT: Guanine nucleotide-binding protein-like 3-like protein (GNL3L) is a novel, evolutionarily conserved, GTP-binding nucleolar protein. This study aimed to investigate the expression, prognosis, and immune value of GNL3L in pan-cancer from multiple omics analyses. Firstly, the expression and prognostic value of GNL3L in pan-cancer were discussed using the TIMER2 database, the GEPIA database, the cBioportal database, COX regression analysis, and enrichment analysis. The association of GNL3L with tumor mutational burden (TMB), tumor microsatellite instability (MSI), mismatch repair (MMR) genes, and immune cells was then analyzed. Finally, an esophageal cancer (ESCA) prediction model was established, and GNL3L clone formation assays were performed. The final results showed that GNL3L is differentially expressed in the vast majority of cancers, is associated with the prognosis of various cancers, and may affect cancer occurrence through processes such as ribonucleoprotein, ribosomal RNA processing, and cell proliferation. At the same time, it was found that the correlation between GNL3L and TMB, MSI, MMR, and various immune cells is significant. The established ESCA prediction model had a strong predictive ability, and GNL3L could significantly affect the proliferation of esophageal cancer cells. In conclusion, GNL3L may serve as an important prognostic biomarker and play an immunomodulatory role in tumors. |
---|