Cargando…
Early Glaucoma Detection by Using Style Transfer to Predict Retinal Nerve Fiber Layer Thickness Distribution on the Fundus Photograph
OBJECTIVE: We aimed to develop a deep learning (DL)–based algorithm for early glaucoma detection based on color fundus photographs that provides information on defects in the retinal nerve fiber layer (RNFL) and its thickness from the mapping and translating relations of spectral domain OCT (SD-OCT)...
Autores principales: | Chen, Henry Shen-Lih, Chen, Guan-An, Syu, Jhen-Yang, Chuang, Lan-Hsin, Su, Wei-Wen, Wu, Wei-Chi, Liu, Jian-Hong, Chen, Jian-Ren, Huang, Su-Chen, Kang, Eugene Yu-Chuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559108/ https://www.ncbi.nlm.nih.gov/pubmed/36245759 http://dx.doi.org/10.1016/j.xops.2022.100180 |
Ejemplares similares
-
Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization
por: Fan, Rui, et al.
Publicado: (2022) -
Artifact Correction in Retinal Nerve Fiber Layer Thickness Maps Using Deep Learning and Its Clinical Utility in Glaucoma
por: Shi, Min, et al.
Publicado: (2023) -
Assessing Surface Shapes of the Optic Nerve Head and Peripapillary Retinal Nerve Fiber Layer in Glaucoma with Artificial Intelligence
por: Saini, Chhavi, et al.
Publicado: (2022) -
Deep Learning Model for Static Ocular Torsion Detection Using Synthetically Generated Fundus Images
por: Wang, Chen, et al.
Publicado: (2023) -
A Multicenter Clinical Study of the Automated Fundus Screening Algorithm
por: Li, Fei, et al.
Publicado: (2022)