Cargando…
Exploration of biomedical knowledge for recurrent glioblastoma using natural language processing deep learning models
BACKGROUND: Efficient exploration of knowledge for the treatment of recurrent glioblastoma (GBM) is critical for both clinicians and researchers. However, due to the large number of clinical trials and published articles, searching for this knowledge is very labor-intensive. In the current study, us...
Autores principales: | Jang, Bum-Sup, Park, Andrew J., Kim, In Ah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559267/ https://www.ncbi.nlm.nih.gov/pubmed/36229835 http://dx.doi.org/10.1186/s12911-022-02003-4 |
Ejemplares similares
-
Deep learning in natural language processing
por: Deng, Li, et al.
Publicado: (2018) -
Relationship between Macrophage and Radiosensitivity in Human Primary and Recurrent Glioblastoma: In Silico Analysis with Publicly Available Datasets
por: Jang, Bum-Sup, et al.
Publicado: (2022) -
Python natural language processing: explore NLP with machine learning and deep learning techniques
por: Thanaki, Jalaj
Publicado: (2017) -
Applied natural language processing with Python: implementing machine learning and deep learning algorithms for natural language processing
por: Beysolow, Taweh
Publicado: (2018) -
Deep learning for natural language processing: solve your natural language processing problems with smart deep neural networks
por: Reddy Bokka, Karthiek, et al.
Publicado: (2019)