Cargando…
Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus
Garden asparagus (Asparagus officinalis, 2n = 2x = 20 chromosomes) is an important dioecious vegetable crop and a model species for studying sex chromosome formation and evolution. However, few molecular cytogenetic studies on garden asparagus have been reported because of its small metaphase chromo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559582/ https://www.ncbi.nlm.nih.gov/pubmed/36247554 http://dx.doi.org/10.3389/fpls.2022.1010664 |
_version_ | 1784807669538750464 |
---|---|
author | You, Chen Wen, Ruidong Zhang, Zhilong Cheng, Guangqian Zhang, Yulan Li, Ning Deng, Chuanliang Li, Shufen Gao, Wujun |
author_facet | You, Chen Wen, Ruidong Zhang, Zhilong Cheng, Guangqian Zhang, Yulan Li, Ning Deng, Chuanliang Li, Shufen Gao, Wujun |
author_sort | You, Chen |
collection | PubMed |
description | Garden asparagus (Asparagus officinalis, 2n = 2x = 20 chromosomes) is an important dioecious vegetable crop and a model species for studying sex chromosome formation and evolution. However, few molecular cytogenetic studies on garden asparagus have been reported because of its small metaphase chromosomes, the scarcity of distinguished cytogenetic markers, and the high content of repetitive sequences. In this study, a set of single copy genes free of repetitive sequences with sizes ranging from 4.3 kb to 8.2 kb were screened and used as probes for fluorescence in situ hybridization (FISH) to identify individual chromosomes of garden asparagus. The chromosome-specific signal distribution patterns of these probes enabled the distinguishment of each pair of chromosomes. The sequence assembly and cytogenetic map were successfully integrated, and the results confirmed that the chromosome 1 representing the sex chromosome in the genome assembly is chromosome 5 in the karyotype analysis. The cytogenetic identification of the male-specific region of the Y chromosome (MSY) was implemented using a mixed probe derived from a number of MSY-specific single copy sequences. In addition, the chromosome orthologous relationship between garden asparagus (A1–A10, karyotypic analysis) and its hermaphrodite close relative, A. setaceus (B1–B10, karyotypic analysis), was analyzed using this collection of chromosome-specific cytological markers. The results showed that B3 is the ortholog of sex chromosome A5 and thus may represent the ancestral autosome of the current sex chromosome in garden asparagus. Chromosomes B5, B4, B1, B8, B7, and B9 are the orthologs of A2, A3, A4, A7, A8, and A10, respectively. The chromosome identification, cytogenetic recognition of MSY, and the orthologous relationship analysis between garden asparagus and A. setaceus are valuable for the further investigation of the sex chromosome emergence and evolutionary mechanism of garden asparagus and genome structure evolution in the Asparagus genus. |
format | Online Article Text |
id | pubmed-9559582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95595822022-10-14 Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus You, Chen Wen, Ruidong Zhang, Zhilong Cheng, Guangqian Zhang, Yulan Li, Ning Deng, Chuanliang Li, Shufen Gao, Wujun Front Plant Sci Plant Science Garden asparagus (Asparagus officinalis, 2n = 2x = 20 chromosomes) is an important dioecious vegetable crop and a model species for studying sex chromosome formation and evolution. However, few molecular cytogenetic studies on garden asparagus have been reported because of its small metaphase chromosomes, the scarcity of distinguished cytogenetic markers, and the high content of repetitive sequences. In this study, a set of single copy genes free of repetitive sequences with sizes ranging from 4.3 kb to 8.2 kb were screened and used as probes for fluorescence in situ hybridization (FISH) to identify individual chromosomes of garden asparagus. The chromosome-specific signal distribution patterns of these probes enabled the distinguishment of each pair of chromosomes. The sequence assembly and cytogenetic map were successfully integrated, and the results confirmed that the chromosome 1 representing the sex chromosome in the genome assembly is chromosome 5 in the karyotype analysis. The cytogenetic identification of the male-specific region of the Y chromosome (MSY) was implemented using a mixed probe derived from a number of MSY-specific single copy sequences. In addition, the chromosome orthologous relationship between garden asparagus (A1–A10, karyotypic analysis) and its hermaphrodite close relative, A. setaceus (B1–B10, karyotypic analysis), was analyzed using this collection of chromosome-specific cytological markers. The results showed that B3 is the ortholog of sex chromosome A5 and thus may represent the ancestral autosome of the current sex chromosome in garden asparagus. Chromosomes B5, B4, B1, B8, B7, and B9 are the orthologs of A2, A3, A4, A7, A8, and A10, respectively. The chromosome identification, cytogenetic recognition of MSY, and the orthologous relationship analysis between garden asparagus and A. setaceus are valuable for the further investigation of the sex chromosome emergence and evolutionary mechanism of garden asparagus and genome structure evolution in the Asparagus genus. Frontiers Media S.A. 2022-09-29 /pmc/articles/PMC9559582/ /pubmed/36247554 http://dx.doi.org/10.3389/fpls.2022.1010664 Text en Copyright © 2022 You, Wen, Zhang, Cheng, Zhang, Li, Deng, Li and Gao https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science You, Chen Wen, Ruidong Zhang, Zhilong Cheng, Guangqian Zhang, Yulan Li, Ning Deng, Chuanliang Li, Shufen Gao, Wujun Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus |
title | Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus |
title_full | Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus |
title_fullStr | Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus |
title_full_unstemmed | Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus |
title_short | Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus |
title_sort | development and applications of a collection of single copy gene-based cytogenetic dna markers in garden asparagus |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559582/ https://www.ncbi.nlm.nih.gov/pubmed/36247554 http://dx.doi.org/10.3389/fpls.2022.1010664 |
work_keys_str_mv | AT youchen developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus AT wenruidong developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus AT zhangzhilong developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus AT chengguangqian developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus AT zhangyulan developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus AT lining developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus AT dengchuanliang developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus AT lishufen developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus AT gaowujun developmentandapplicationsofacollectionofsinglecopygenebasedcytogeneticdnamarkersingardenasparagus |