Cargando…
Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard
Extensive research has been conducted on plant protection unmanned aerial vehicle (UAV) chemical application technology in recent years owing to its importance as a means of pest and disease control. UAV spraying in orchards faces the drawback of drift risk and can be hazardous to non-targeted crops...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559834/ https://www.ncbi.nlm.nih.gov/pubmed/36247584 http://dx.doi.org/10.3389/fpls.2022.981494 |
_version_ | 1784807710641881088 |
---|---|
author | Li, Longlong Hu, Zhihong Liu, Qingju Yi, Tongchuan Han, Ping Zhang, Ruirui Pan, Ligang |
author_facet | Li, Longlong Hu, Zhihong Liu, Qingju Yi, Tongchuan Han, Ping Zhang, Ruirui Pan, Ligang |
author_sort | Li, Longlong |
collection | PubMed |
description | Extensive research has been conducted on plant protection unmanned aerial vehicle (UAV) chemical application technology in recent years owing to its importance as a means of pest and disease control. UAV spraying in orchards faces the drawback of drift risk and can be hazardous to non-targeted crops, humans, and the environment. A detailed and systematic analysis must be performed to determine the uniformity and drift risk of plant UAV sprays. In this study, a peach orchard is sprayed with a plant-protection UAV at three different flight velocities and we evaluate the combined pesticide deposition performance of the canopy, ground loss, downwind ground drift, and airborne drift. Additionally, the droplet size and coverage rate in the canopy are calculated by using water-sensitive paper. The results demonstrate that there is significant difference in the droplet size at flight velocities of 1–3 m/s. The droplet size in the lower canopy is slightly smaller than those in the middle and upper parts. Increasing the flight velocity helps the pesticide droplets to spread and penetrate the canopy. However, it also causes a non-uniform pesticide deposition, reduced effective coverage ratio and effective density ratio. Among the three pesticides used in the experiment, imidacloprid exhibits the best deposition efficiency. The deposition amount and normalized deposition amount in the canopy were the highest at a flight velocity of 2 m/s, accompanied by a lower ground loss under the canopy. The highest near-field ground drift is observed at a velocity of 1 m/s, and the far-field airborne drift is highest at 3 m/s. Lastly, this study provides a reference for the commercial application of plant-protection UAVs. |
format | Online Article Text |
id | pubmed-9559834 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95598342022-10-14 Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard Li, Longlong Hu, Zhihong Liu, Qingju Yi, Tongchuan Han, Ping Zhang, Ruirui Pan, Ligang Front Plant Sci Plant Science Extensive research has been conducted on plant protection unmanned aerial vehicle (UAV) chemical application technology in recent years owing to its importance as a means of pest and disease control. UAV spraying in orchards faces the drawback of drift risk and can be hazardous to non-targeted crops, humans, and the environment. A detailed and systematic analysis must be performed to determine the uniformity and drift risk of plant UAV sprays. In this study, a peach orchard is sprayed with a plant-protection UAV at three different flight velocities and we evaluate the combined pesticide deposition performance of the canopy, ground loss, downwind ground drift, and airborne drift. Additionally, the droplet size and coverage rate in the canopy are calculated by using water-sensitive paper. The results demonstrate that there is significant difference in the droplet size at flight velocities of 1–3 m/s. The droplet size in the lower canopy is slightly smaller than those in the middle and upper parts. Increasing the flight velocity helps the pesticide droplets to spread and penetrate the canopy. However, it also causes a non-uniform pesticide deposition, reduced effective coverage ratio and effective density ratio. Among the three pesticides used in the experiment, imidacloprid exhibits the best deposition efficiency. The deposition amount and normalized deposition amount in the canopy were the highest at a flight velocity of 2 m/s, accompanied by a lower ground loss under the canopy. The highest near-field ground drift is observed at a velocity of 1 m/s, and the far-field airborne drift is highest at 3 m/s. Lastly, this study provides a reference for the commercial application of plant-protection UAVs. Frontiers Media S.A. 2022-09-29 /pmc/articles/PMC9559834/ /pubmed/36247584 http://dx.doi.org/10.3389/fpls.2022.981494 Text en Copyright © 2022 Li, Hu, Liu, Yi, Han, Zhang and Pan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Li, Longlong Hu, Zhihong Liu, Qingju Yi, Tongchuan Han, Ping Zhang, Ruirui Pan, Ligang Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard |
title | Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard |
title_full | Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard |
title_fullStr | Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard |
title_full_unstemmed | Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard |
title_short | Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard |
title_sort | effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559834/ https://www.ncbi.nlm.nih.gov/pubmed/36247584 http://dx.doi.org/10.3389/fpls.2022.981494 |
work_keys_str_mv | AT lilonglong effectofflightvelocityondropletdepositionanddriftofcombinedpesticidessprayedusinganunmannedaerialvehiclesprayerinapeachorchard AT huzhihong effectofflightvelocityondropletdepositionanddriftofcombinedpesticidessprayedusinganunmannedaerialvehiclesprayerinapeachorchard AT liuqingju effectofflightvelocityondropletdepositionanddriftofcombinedpesticidessprayedusinganunmannedaerialvehiclesprayerinapeachorchard AT yitongchuan effectofflightvelocityondropletdepositionanddriftofcombinedpesticidessprayedusinganunmannedaerialvehiclesprayerinapeachorchard AT hanping effectofflightvelocityondropletdepositionanddriftofcombinedpesticidessprayedusinganunmannedaerialvehiclesprayerinapeachorchard AT zhangruirui effectofflightvelocityondropletdepositionanddriftofcombinedpesticidessprayedusinganunmannedaerialvehiclesprayerinapeachorchard AT panligang effectofflightvelocityondropletdepositionanddriftofcombinedpesticidessprayedusinganunmannedaerialvehiclesprayerinapeachorchard |