Cargando…

Auditory detection is modulated by theta phase of silent lip movements

Audiovisual speech perception relies, among other things, on our expertise to map a speaker's lip movements with speech sounds. This multimodal matching is facilitated by salient syllable features that align lip movements and acoustic envelope signals in the 4–8 ​Hz theta band. Although non-exc...

Descripción completa

Detalles Bibliográficos
Autores principales: Biau, Emmanuel, Wang, Danying, Park, Hyojin, Jensen, Ole, Hanslmayr, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559921/
https://www.ncbi.nlm.nih.gov/pubmed/36246505
http://dx.doi.org/10.1016/j.crneur.2021.100014
_version_ 1784807725191921664
author Biau, Emmanuel
Wang, Danying
Park, Hyojin
Jensen, Ole
Hanslmayr, Simon
author_facet Biau, Emmanuel
Wang, Danying
Park, Hyojin
Jensen, Ole
Hanslmayr, Simon
author_sort Biau, Emmanuel
collection PubMed
description Audiovisual speech perception relies, among other things, on our expertise to map a speaker's lip movements with speech sounds. This multimodal matching is facilitated by salient syllable features that align lip movements and acoustic envelope signals in the 4–8 ​Hz theta band. Although non-exclusive, the predominance of theta rhythms in speech processing has been firmly established by studies showing that neural oscillations track the acoustic envelope in the primary auditory cortex. Equivalently, theta oscillations in the visual cortex entrain to lip movements, and the auditory cortex is recruited during silent speech perception. These findings suggest that neuronal theta oscillations may play a functional role in organising information flow across visual and auditory sensory areas. We presented silent speech movies while participants performed a pure tone detection task to test whether entrainment to lip movements directs the auditory system and drives behavioural outcomes. We showed that auditory detection varied depending on the ongoing theta phase conveyed by lip movements in the movies. In a complementary experiment presenting the same movies while recording participants' electro-encephalogram (EEG), we found that silent lip movements entrained neural oscillations in the visual and auditory cortices with the visual phase leading the auditory phase. These results support the idea that the visual cortex entrained by lip movements filtered the sensitivity of the auditory cortex via theta phase synchronization.
format Online
Article
Text
id pubmed-9559921
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95599212022-10-14 Auditory detection is modulated by theta phase of silent lip movements Biau, Emmanuel Wang, Danying Park, Hyojin Jensen, Ole Hanslmayr, Simon Curr Res Neurobiol Research Article Audiovisual speech perception relies, among other things, on our expertise to map a speaker's lip movements with speech sounds. This multimodal matching is facilitated by salient syllable features that align lip movements and acoustic envelope signals in the 4–8 ​Hz theta band. Although non-exclusive, the predominance of theta rhythms in speech processing has been firmly established by studies showing that neural oscillations track the acoustic envelope in the primary auditory cortex. Equivalently, theta oscillations in the visual cortex entrain to lip movements, and the auditory cortex is recruited during silent speech perception. These findings suggest that neuronal theta oscillations may play a functional role in organising information flow across visual and auditory sensory areas. We presented silent speech movies while participants performed a pure tone detection task to test whether entrainment to lip movements directs the auditory system and drives behavioural outcomes. We showed that auditory detection varied depending on the ongoing theta phase conveyed by lip movements in the movies. In a complementary experiment presenting the same movies while recording participants' electro-encephalogram (EEG), we found that silent lip movements entrained neural oscillations in the visual and auditory cortices with the visual phase leading the auditory phase. These results support the idea that the visual cortex entrained by lip movements filtered the sensitivity of the auditory cortex via theta phase synchronization. Elsevier 2021-06-12 /pmc/articles/PMC9559921/ /pubmed/36246505 http://dx.doi.org/10.1016/j.crneur.2021.100014 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Biau, Emmanuel
Wang, Danying
Park, Hyojin
Jensen, Ole
Hanslmayr, Simon
Auditory detection is modulated by theta phase of silent lip movements
title Auditory detection is modulated by theta phase of silent lip movements
title_full Auditory detection is modulated by theta phase of silent lip movements
title_fullStr Auditory detection is modulated by theta phase of silent lip movements
title_full_unstemmed Auditory detection is modulated by theta phase of silent lip movements
title_short Auditory detection is modulated by theta phase of silent lip movements
title_sort auditory detection is modulated by theta phase of silent lip movements
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9559921/
https://www.ncbi.nlm.nih.gov/pubmed/36246505
http://dx.doi.org/10.1016/j.crneur.2021.100014
work_keys_str_mv AT biauemmanuel auditorydetectionismodulatedbythetaphaseofsilentlipmovements
AT wangdanying auditorydetectionismodulatedbythetaphaseofsilentlipmovements
AT parkhyojin auditorydetectionismodulatedbythetaphaseofsilentlipmovements
AT jensenole auditorydetectionismodulatedbythetaphaseofsilentlipmovements
AT hanslmayrsimon auditorydetectionismodulatedbythetaphaseofsilentlipmovements