Cargando…

Specification of the endocrine primordia controlling insect moulting and metamorphosis by the JAK/STAT signalling pathway

The corpora allata and the prothoracic glands control moulting and metamorphosis in insects. These endocrine glands are specified in the maxillary and labial segments at positions homologous to those forming the trachea in more posterior segments. Glands and trachea can be homeotically transformed i...

Descripción completa

Detalles Bibliográficos
Autores principales: García-Ferrés, Mar, Sánchez-Higueras, Carlos, Espinosa-Vázquez, Jose Manuel, C-G Hombría, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560620/
https://www.ncbi.nlm.nih.gov/pubmed/36191039
http://dx.doi.org/10.1371/journal.pgen.1010427
Descripción
Sumario:The corpora allata and the prothoracic glands control moulting and metamorphosis in insects. These endocrine glands are specified in the maxillary and labial segments at positions homologous to those forming the trachea in more posterior segments. Glands and trachea can be homeotically transformed into each other suggesting that all three evolved from a metamerically repeated organ that diverged to form glands in the head and respiratory organs in the trunk. While much is known about tracheal specification, there is limited information about corpora allata and prothorathic gland specification. Here we show that the expression of a key regulator of early gland development, the snail gene, is controlled by the Dfd and Scr Hox genes and by the Hedgehog and Wnt signalling pathways that induce localised transcription of upd, the ligand of the JAK/STAT signalling pathway, which lies at the heart of gland specification. Our results show that the same upstream regulators are required for the early gland and tracheal primordia specification, reinforcing the hypothesis that they originated from a segmentally repeated organ present in an ancient arthropod.