Cargando…
HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis
Data clustering plays a significant role in biomedical sciences, particularly in single-cell data analysis. Researchers use clustering algorithms to group individual cells into populations that can be evaluated across different levels of disease progression, drug response, and other clinical statuse...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560626/ https://www.ncbi.nlm.nih.gov/pubmed/36191000 http://dx.doi.org/10.1371/journal.pcbi.1010349 |
_version_ | 1784807793064148992 |
---|---|
author | Anibal, James Day, Alexandre G. Bahadiroglu, Erol O’Neil, Liam Phan, Long Peltekian, Alec Erez, Amir Kaplan, Mariana Altan-Bonnet, Grégoire Mehta, Pankaj |
author_facet | Anibal, James Day, Alexandre G. Bahadiroglu, Erol O’Neil, Liam Phan, Long Peltekian, Alec Erez, Amir Kaplan, Mariana Altan-Bonnet, Grégoire Mehta, Pankaj |
author_sort | Anibal, James |
collection | PubMed |
description | Data clustering plays a significant role in biomedical sciences, particularly in single-cell data analysis. Researchers use clustering algorithms to group individual cells into populations that can be evaluated across different levels of disease progression, drug response, and other clinical statuses. In many cases, multiple sets of clusters must be generated to assess varying levels of cluster specificity. For example, there are many subtypes of leukocytes (e.g. T cells), whose individual preponderance and phenotype must be assessed for statistical/functional significance. In this report, we introduce a novel hierarchical density clustering algorithm (HAL-x) that uses supervised linkage methods to build a cluster hierarchy on raw single-cell data. With this new approach, HAL-x can quickly predict multiple sets of labels for immense datasets, achieving a considerable improvement in computational efficiency on large datasets compared to existing methods. We also show that cell clusters generated by HAL-x yield near-perfect F1-scores when classifying different clinical statuses based on single-cell profiles. Our hierarchical density clustering algorithm achieves high accuracy in single cell classification in a scalable, tunable and rapid manner. |
format | Online Article Text |
id | pubmed-9560626 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95606262022-10-14 HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis Anibal, James Day, Alexandre G. Bahadiroglu, Erol O’Neil, Liam Phan, Long Peltekian, Alec Erez, Amir Kaplan, Mariana Altan-Bonnet, Grégoire Mehta, Pankaj PLoS Comput Biol Research Article Data clustering plays a significant role in biomedical sciences, particularly in single-cell data analysis. Researchers use clustering algorithms to group individual cells into populations that can be evaluated across different levels of disease progression, drug response, and other clinical statuses. In many cases, multiple sets of clusters must be generated to assess varying levels of cluster specificity. For example, there are many subtypes of leukocytes (e.g. T cells), whose individual preponderance and phenotype must be assessed for statistical/functional significance. In this report, we introduce a novel hierarchical density clustering algorithm (HAL-x) that uses supervised linkage methods to build a cluster hierarchy on raw single-cell data. With this new approach, HAL-x can quickly predict multiple sets of labels for immense datasets, achieving a considerable improvement in computational efficiency on large datasets compared to existing methods. We also show that cell clusters generated by HAL-x yield near-perfect F1-scores when classifying different clinical statuses based on single-cell profiles. Our hierarchical density clustering algorithm achieves high accuracy in single cell classification in a scalable, tunable and rapid manner. Public Library of Science 2022-10-03 /pmc/articles/PMC9560626/ /pubmed/36191000 http://dx.doi.org/10.1371/journal.pcbi.1010349 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Anibal, James Day, Alexandre G. Bahadiroglu, Erol O’Neil, Liam Phan, Long Peltekian, Alec Erez, Amir Kaplan, Mariana Altan-Bonnet, Grégoire Mehta, Pankaj HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis |
title | HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis |
title_full | HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis |
title_fullStr | HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis |
title_full_unstemmed | HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis |
title_short | HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis |
title_sort | hal-x: scalable hierarchical clustering for rapid and tunable single-cell analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560626/ https://www.ncbi.nlm.nih.gov/pubmed/36191000 http://dx.doi.org/10.1371/journal.pcbi.1010349 |
work_keys_str_mv | AT anibaljames halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT dayalexandreg halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT bahadirogluerol halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT oneilliam halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT phanlong halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT peltekianalec halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT erezamir halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT kaplanmariana halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT altanbonnetgregoire halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis AT mehtapankaj halxscalablehierarchicalclusteringforrapidandtunablesinglecellanalysis |