Cargando…
Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis
PURPOSE: Developing robust artificial intelligence (AI) models for medical image analysis requires large quantities of diverse, well-chosen data that can prove challenging to collect because of privacy concerns, disease rarity, or diagnostic label quality. Collecting image-based datasets for retinop...
Autores principales: | Coyner, Aaron S., Chen, Jimmy S., Chang, Ken, Singh, Praveer, Ostmo, Susan, Chan, R. V. Paul, Chiang, Michael F., Kalpathy-Cramer, Jayashree, Campbell, J. Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560638/ https://www.ncbi.nlm.nih.gov/pubmed/36249693 http://dx.doi.org/10.1016/j.xops.2022.100126 |
Ejemplares similares
-
Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks
por: Chen, Jimmy S., et al.
Publicado: (2021) -
Robustness of privacy-preserving collaborative recommenders against popularity bias problem
por: Gulsoy, Mert, et al.
Publicado: (2023) -
Oxygenation Fluctuations Associated with Severe Retinopathy of Prematurity: Insights from a Multimodal Deep Learning Approach
por: Lin, Wei-Chun, et al.
Publicado: (2023) -
Radiomics-Based Assessment of OCT Angiography Images for Diabetic Retinopathy Diagnosis
por: Carrera-Escalé, Laura, et al.
Publicado: (2022) -
Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists’ Dilated Examinations
por: Lim, Jennifer Irene, et al.
Publicado: (2022)