Cargando…
Augmenting Kalman Filter Machine Learning Models with Data from OCT to Predict Future Visual Field Loss: An Analysis Using Data from the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovation in Glaucoma Study
PURPOSE: To assess whether the predictive accuracy of machine learning algorithms using Kalman filtering for forecasting future values of global indices on perimetry can be enhanced by adding global retinal nerve fiber layer (RNFL) data and whether model performance is influenced by the racial compo...
Autores principales: | Zhalechian, Mohammad, Van Oyen, Mark P., Lavieri, Mariel S., De Moraes, Carlos Gustavo, Girkin, Christopher A., Fazio, Massimo A., Weinreb, Robert N., Bowd, Christopher, Liebmann, Jeffrey M., Zangwill, Linda M., Andrews, Christopher A., Stein, Joshua D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560647/ https://www.ncbi.nlm.nih.gov/pubmed/36246178 http://dx.doi.org/10.1016/j.xops.2021.100097 |
Ejemplares similares
-
Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES)
por: Girkin, Christopher A., et al.
Publicado: (2019) -
Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study
por: Girkin, Christopher A., et al.
Publicado: (2021) -
Structural Change Can Be Detected in Advanced-Glaucoma Eyes
por: Belghith, Akram, et al.
Publicado: (2016) -
Individualized Glaucoma Change Detection Using Deep Learning Auto Encoder-Based Regions of Interest
por: Bowd, Christopher, et al.
Publicado: (2021) -
Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization
por: Fan, Rui, et al.
Publicado: (2022)