Cargando…
MHA-Net: A Multibranch Hybrid Attention Network for Medical Image Segmentation
The robust segmentation of organs from the medical image is the key technique in medical image analysis for disease diagnosis. U-Net is a robust structure for medical image segmentation. However, U-Net adopts consecutive downsampling encoders to capture multiscale features, resulting in the loss of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560845/ https://www.ncbi.nlm.nih.gov/pubmed/36245836 http://dx.doi.org/10.1155/2022/8375981 |
Sumario: | The robust segmentation of organs from the medical image is the key technique in medical image analysis for disease diagnosis. U-Net is a robust structure for medical image segmentation. However, U-Net adopts consecutive downsampling encoders to capture multiscale features, resulting in the loss of contextual information and insufficient recovery of high-level semantic features. In this paper, we present a new multibranch hybrid attention network (MHA-Net) to capture more contextual information and high-level semantic features. The main idea of our proposed MHA-Net is to use the multibranch hybrid attention feature decoder to recover more high-level semantic features. The lightweight pyramid split attention (PSA) module is used to connect the encoder and decoder subnetwork to obtain a richer multiscale feature map. We compare the proposed MHA-Net to state-of-art approaches on the DRIVE dataset, the fluoroscopic roentgenographic stereophotogrammetric analysis X-ray dataset, and the polyp dataset. The experimental results on different modal images reveal that our proposed MHA-Net provides better segmentation results than other segmentation approaches. |
---|