Cargando…
MHA-Net: A Multibranch Hybrid Attention Network for Medical Image Segmentation
The robust segmentation of organs from the medical image is the key technique in medical image analysis for disease diagnosis. U-Net is a robust structure for medical image segmentation. However, U-Net adopts consecutive downsampling encoders to capture multiscale features, resulting in the loss of...
Autores principales: | Zhang, Meifang, Sun, Qi, Cai, Fanggang, Yang, Changcai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560845/ https://www.ncbi.nlm.nih.gov/pubmed/36245836 http://dx.doi.org/10.1155/2022/8375981 |
Ejemplares similares
-
Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
por: Shen, Ying, et al.
Publicado: (2023) -
A 3D-2D Multibranch Feature Fusion and Dense Attention Network for Hyperspectral Image Classification
por: Gao, Hongmin, et al.
Publicado: (2021) -
MEA-Net: multilayer edge attention network for medical image segmentation
por: Liu, Huilin, et al.
Publicado: (2022) -
HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation
por: An, Lijing, et al.
Publicado: (2022) -
Response to the white paper on MHA reform: marginalisation of patients detained under part III of the MHA
por: Markham, Sarah
Publicado: (2021)