Cargando…
A Multimodel-Based Deep Learning Framework for Short Text Multiclass Classification with the Imbalanced and Extremely Small Data Set
Text classification plays an important role in many practical applications. In the real world, there are extremely small datasets. Most existing methods adopt pretrained neural network models to handle this kind of dataset. However, these methods are either difficult to deploy on mobile devices beca...
Autores principales: | Tong, Jiajun, Wang, Zhixiao, Rui, Xiaobin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560856/ https://www.ncbi.nlm.nih.gov/pubmed/36248939 http://dx.doi.org/10.1155/2022/7183207 |
Ejemplares similares
-
Iterative ensemble feature selection for multiclass classification of imbalanced microarray data
por: Yang, Junshan, et al.
Publicado: (2016) -
An Efficient Data Classification Decision Based on Multimodel Deep Learning
por: Hu, Wenjin, et al.
Publicado: (2022) -
Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification
por: Hammad, Mohamed, et al.
Publicado: (2022) -
Comparison between Statistical Models and Machine Learning Methods on Classification for Highly Imbalanced Multiclass Kidney Data
por: Jeong, Bomi, et al.
Publicado: (2020) -
Simple-Random-Sampling-Based Multiclass Text Classification Algorithm
por: Liu, Wuying, et al.
Publicado: (2014)