Cargando…
Elastin-Derived Peptides in the Central Nervous System: Friend or Foe
Elastin is one of the main structural matrix proteins of the arteries, lung, cartilage, elastic ligaments, brain vessels, and skin. These elastin fibers display incredible resilience and structural stability with long half-life. However, during some physiological and pathophysiological conditions, e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560920/ https://www.ncbi.nlm.nih.gov/pubmed/34374904 http://dx.doi.org/10.1007/s10571-021-01140-0 |
Sumario: | Elastin is one of the main structural matrix proteins of the arteries, lung, cartilage, elastic ligaments, brain vessels, and skin. These elastin fibers display incredible resilience and structural stability with long half-life. However, during some physiological and pathophysiological conditions, elastin is prone to proteolytic degradation and, due to the extremely low turnover rate, its degradation is practically an irreversible and irreparable phenomenon. As a result of elastin degradation, new peptides called elastin-derived peptides (EDPs) are formed. A growing body of evidence suggests that these peptides play an important role in the development of age-related vascular disease. They are also detected in the cerebrospinal fluid of healthy people, and their amount increases in patients after ischemic stroke. Recently, elastin-like polypeptides have been reported to induce overproduction of beta-amyloid in a model of Alzheimer's disease. Nevertheless, the role and mechanism of action of EDPs in the nervous system is largely unknown and limited to only a few studies. The article summarizes the current state of knowledge on the role of EDPs in the nervous system. |
---|