Cargando…
Deep residual neural-network-based robot joint fault diagnosis method
A data driven method-based robot joint fault diagnosis method using deep residual neural network (DRNN) is proposed, where Resnet-based fault diagnosis method is introduced. The proposed method mainly deals with kinds of fault types, such as gain error, offset error and malfunction for both sensors...
Autores principales: | Pan, Jinghui, Qu, Lili, Peng, Kaixiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561173/ https://www.ncbi.nlm.nih.gov/pubmed/36229502 http://dx.doi.org/10.1038/s41598-022-22171-7 |
Ejemplares similares
-
Sensor and Actuator Fault Diagnosis for Robot Joint Based on Deep CNN
por: Pan, Jinghui, et al.
Publicado: (2021) -
Optimization of Gearbox Fault Detection Method Based on Deep Residual Neural Network Algorithm
por: Wang, Zhaohua, et al.
Publicado: (2023) -
Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network
por: Jiang, Peng, et al.
Publicado: (2016) -
Fault Diagnosis Method for Industrial Robots Based on DBN Joint Information Fusion Technology
por: Jiao, Jian, et al.
Publicado: (2022) -
Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
por: Li, Hongmei, et al.
Publicado: (2019)