Cargando…
Geographic encoding of transcripts enabled high-accuracy and isoform-aware deep learning of RNA methylation
As the most pervasive epigenetic mark present on mRNA and lncRNA, N(6)-methyladenosine (m(6)A) RNA methylation regulates all stages of RNA life in various biological processes and disease mechanisms. Computational methods for deciphering RNA modification have achieved great success in recent years;...
Autores principales: | Huang, Daiyun, Chen, Kunqi, Song, Bowen, Wei, Zhen, Su, Jionglong, Coenen, Frans, de Magalhães, João Pedro, Rigden, Daniel J, Meng, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561283/ https://www.ncbi.nlm.nih.gov/pubmed/36155798 http://dx.doi.org/10.1093/nar/gkac830 |
Ejemplares similares
-
Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications
por: Song, Zitao, et al.
Publicado: (2021) -
m(5)C-Atlas: a comprehensive database for decoding and annotating the 5-methylcytosine (m(5)C) epitranscriptome
por: Ma, Jiongming, et al.
Publicado: (2021) -
Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data
por: Huang, Daiyun, et al.
Publicado: (2021) -
WHISTLE: a high-accuracy map of the human N(6)-methyladenosine (m(6)A) epitranscriptome predicted using a machine learning approach
por: Chen, Kunqi, et al.
Publicado: (2019) -
RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis
por: Chen, Kunqi, et al.
Publicado: (2020)