Cargando…
Human RNase 4 improves mRNA sequence characterization by LC–MS/MS
With the rapid growth of synthetic messenger RNA (mRNA)-based therapeutics and vaccines, the development of analytical tools for characterization of long, complex RNAs has become essential. Tandem liquid chromatography–mass spectrometry (LC–MS/MS) permits direct assessment of the mRNA primary sequen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561288/ https://www.ncbi.nlm.nih.gov/pubmed/35871301 http://dx.doi.org/10.1093/nar/gkac632 |
Sumario: | With the rapid growth of synthetic messenger RNA (mRNA)-based therapeutics and vaccines, the development of analytical tools for characterization of long, complex RNAs has become essential. Tandem liquid chromatography–mass spectrometry (LC–MS/MS) permits direct assessment of the mRNA primary sequence and modifications thereof without conversion to cDNA or amplification. It relies upon digestion of mRNA with site-specific endoribonucleases to generate pools of short oligonucleotides that are then amenable to MS-based sequence analysis. Here, we showed that the uridine-specific human endoribonuclease hRNase 4 improves mRNA sequence coverage, in comparison with the benchmark enzyme RNase T1, by producing a larger population of uniquely mappable cleavage products. We deployed hRNase 4 to characterize mRNAs fully substituted with 1-methylpseudouridine (m(1)Ψ) or 5-methoxyuridine (mo(5)U), as well as mRNAs selectively depleted of uridine–two key strategies to reduce synthetic mRNA immunogenicity. Lastly, we demonstrated that hRNase 4 enables direct assessment of the 5′ cap incorporation into in vitro transcribed mRNA. Collectively, this study highlights the power of hRNase 4 to interrogate mRNA sequence, identity, and modifications by LC–MS/MS. |
---|