Cargando…

DeepMPM: a mortality risk prediction model using longitudinal EHR data

BACKGROUND: Accurate precision approaches have far not been developed for modeling mortality risk in intensive care unit (ICU) patients. Conventional mortality risk prediction methods can hardly extract the information in longitudinal electronic medical records (EHRs) effectively, since they simply...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Fan, Zhang, Jian, Chen, Wanyi, Lai, Yongxuan, Wang, Ying, Zou, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561325/
https://www.ncbi.nlm.nih.gov/pubmed/36241976
http://dx.doi.org/10.1186/s12859-022-04975-6
Descripción
Sumario:BACKGROUND: Accurate precision approaches have far not been developed for modeling mortality risk in intensive care unit (ICU) patients. Conventional mortality risk prediction methods can hardly extract the information in longitudinal electronic medical records (EHRs) effectively, since they simply aggregate the heterogeneous variables in EHRs, ignoring the complex relationship and interactions between variables and the time dependence in longitudinal records. Recently deep learning approaches have been widely used in modeling longitudinal EHR data. However, most existing deep learning-based risk prediction approaches only use the information of a single disease, neglecting the interactions between multiple diseases and different conditions. RESULTS: In this paper, we address this unmet need by leveraging disease and treatment information in EHRs to develop a mortality risk prediction model based on deep learning (DeepMPM). DeepMPM utilizes a two-level attention mechanism, i.e. visit-level and variable-level attention, to derive the representation of patient risk status from patient’s multiple longitudinal medical records. Benefiting from using EHR of patients with multiple diseases and different conditions, DeepMPM can achieve state-of-the-art performances in mortality risk prediction. CONCLUSIONS: Experiment results on MIMIC III database demonstrates that with the disease and treatment information DeepMPM can achieve a good performance in terms of Area Under ROC Curve (0.85). Moreover, DeepMPM can successfully model the complex interactions between diseases to achieve better representation learning of disease and treatment than other deep learning approaches, so as to improve the accuracy of mortality prediction. A case study also shows that DeepMPM offers the potential to provide users with insights into feature correlation in data as well as model behavior for each prediction.