Cargando…
Gene-specific machine learning model to predict the pathogenicity of BRCA2 variants
Background: Existing BRCA2-specific variant pathogenicity prediction algorithms focus on the prediction of the functional impact of a subtype of variants alone. General variant effect predictors are applicable to all subtypes, but are trained on putative benign and pathogenic variants and do not acc...
Autores principales: | Khandakji, Mohannad N., Mifsud, Borbala |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561395/ https://www.ncbi.nlm.nih.gov/pubmed/36246618 http://dx.doi.org/10.3389/fgene.2022.982930 |
Ejemplares similares
-
BRCA1-specific machine learning model predicts variant pathogenicity with high accuracy
por: Khandakji, Mohannad, et al.
Publicado: (2023) -
Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants
por: Kang, Moonjong, et al.
Publicado: (2023) -
Ovarian Cancer With Breast Metastasis and Two Pathogenic Variants of BRCA1 Gene
por: Kowsarnia, Saeedeh, et al.
Publicado: (2021) -
Computational Prediction of the Pathogenic Status of Cancer-Specific Somatic Variants
por: Feizi, Nikta, et al.
Publicado: (2022) -
Prediction of BRCA Gene Mutation in Breast Cancer Based on Deep Learning and Histopathology Images
por: Wang, Xiaoxiao, et al.
Publicado: (2021)