Cargando…
Machine Learning‐Based Lifetime Prediction of Lithium‐Ion Cells
Precise lifetime predictions for lithium‐ion cells are crucial for efficient battery development and thus enable profitable electric vehicles and a sustainable transformation towards zero‐emission mobility. However, limitations remain due to the complex degradation of lithium‐ion cells, strongly inf...
Autores principales: | Schofer, Kai, Laufer, Florian, Stadler, Jochen, Hahn, Severin, Gaiselmann, Gerd, Latz, Arnulf, Birke, Kai P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561774/ https://www.ncbi.nlm.nih.gov/pubmed/36026576 http://dx.doi.org/10.1002/advs.202200630 |
Ejemplares similares
-
Multiscale modeling of lithium ion batteries: thermal aspects
por: Latz, Arnulf, et al.
Publicado: (2015) -
Protocol for state-of-health prediction of lithium-ion batteries based on machine learning
por: Shu, Xing, et al.
Publicado: (2022) -
State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives
por: Shu, Xing, et al.
Publicado: (2021) -
Data on Machine Learning regenerated Lithium-ion battery impedance
por: Temiz, Selcuk, et al.
Publicado: (2022) -
Preparation and Characterization of Li-Ion Graphite Anodes Using Synchrotron Tomography
por: Mitsch, Tim, et al.
Publicado: (2014)