Cargando…
Machine Learning Reveals a General Understanding of Printability in Formulations Based on Rheology Additives
Hydrogel ink formulations based on rheology additives are becoming increasingly popular as they enable 3‐dimensional (3D) printing of non‐printable but biologically relevant materials. Despite the widespread use, a generalized understanding of how these hydrogel formulations become printable is stil...
Autores principales: | Nadernezhad, Ali, Groll, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561784/ https://www.ncbi.nlm.nih.gov/pubmed/36008135 http://dx.doi.org/10.1002/advs.202202638 |
Ejemplares similares
-
Machine Learning in Predicting Printable Biomaterial Formulations for Direct Ink Writing
por: Chen, Hongyi, et al.
Publicado: (2023) -
The Rheology and Printability of Cartilage Matrix-Only Biomaterials
por: Kiyotake, Emi A., et al.
Publicado: (2022) -
FDM Printability of PLA Based-Materials: The Key Role of the Rheological Behavior
por: Arrigo, Rossella, et al.
Publicado: (2022) -
The correlation between rheological properties and extrusion-based printability in bioink artifact quantification
por: Gillispie, Gregory J., et al.
Publicado: (2023) -
Printability of alloys for additive manufacturing
por: Mukherjee, T., et al.
Publicado: (2016)