Cargando…

Development of the Novel Bifunctional Fusion Protein BR102 That Simultaneously Targets PD-L1 and TGF-β for Anticancer Immunotherapy

SIMPLE SUMMARY: Immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1 antibodies, have revolutionized the therapy landscape of cancer immunotherapy. However, poor clinical response to ICIs and drug resistance are the main challenges for ICIs immunotherapy. TGF-β produced in the TME was found...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zhen-Hua, Li, Na, Gao, Zhang-Zhao, Chen, Gang, Nie, Lei, Zhou, Ya-Qiong, Jiang, Mei-Zhu, Chen, Yao, Chen, Juan, Mei, Xiao-Fen, Hu, Feng, Wang, Hai-Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562016/
https://www.ncbi.nlm.nih.gov/pubmed/36230887
http://dx.doi.org/10.3390/cancers14194964
Descripción
Sumario:SIMPLE SUMMARY: Immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1 antibodies, have revolutionized the therapy landscape of cancer immunotherapy. However, poor clinical response to ICIs and drug resistance are the main challenges for ICIs immunotherapy. TGF-β produced in the TME was found to confer resistance to PD-1/PD-L1-targeted immunotherapy. The independent and complementary immunosuppressive role of PD-L1 and TGF-β in cancer progression provides a rationale for simultaneously targeting TGF-β and PD-L1 to improve anti-PD-L1 therapy. Consequently, we develop and characterize a novel anti-PD-L1/TGF-β bifunctional fusion protein termed BR102. The data suggest that BR102 could simultaneously disrupt TGF-β- and PD-L1-mediated signals and display high antitumor efficacy and safety. The data support further clinical advancement of BR102 as a promising approach to cancer immunotherapy. ABSTRACT: Immune checkpoint inhibitors (ICIs) are remarkable breakthroughs in treating various types of cancer, but many patients still do not derive long-term clinical benefits. Increasing evidence shows that TGF-β can promote cancer progression and confer resistance to ICI therapies. Consequently, dual blocking of TGF-β and immune checkpoint may provide an effective approach to enhance the effectiveness of ICI therapies. Here, we reported the development and preclinical characterization of a novel bifunctional anti-PD-L1/TGF-β fusion protein, BR102. BR102 comprises an anti-PD-L1 antibody fused to the extracellular domain (ECD) of human TGF-βRII. BR102 is capable of simultaneously binding to TGF-β and PD-L1. Incorporating TGF-βRII into BR102 does not alter the PD-L1 blocking activity of BR102. In vitro characterization further demonstrated that BR102 could disrupt TGF-β-induced signaling. Moreover, BR102 significantly inhibits tumor growth in vivo and exerts a superior antitumor effect compared to anti-PD-L1. Administration of BR102 to cynomolgus monkeys is well-tolerated, with only minimal to moderate and reversing red cell changes noted. The data demonstrated the efficacy and safety of the novel anti-PD-L1/TGF-β fusion protein and supported the further clinical development of BR102 for anticancer therapy.